
Practical 1: Getting Started
Getting to grips with Jupyter, Git and Markdown

Table of contents

1 Running Docker 2

2 Setting Up GitHub 5

3 Updating the .gitignore File 6

4 Creating Your First Remote File 8

5 Setting Up Git Locally 10

6 Setting up a GitHub Web Site 15

7 Other Ways of Using Docker 15

8 Answers 16
This week’s practical is focussed on getting you set up with the tools and accounts
that you’ll need to across many of the CASA modules in Terms 1 and 2, and famil-
iarising you with ‘how people do data science’. Outside of academia, it’s rare to find
a data scientist who works entirely on their own: most code is collaborative, as is
most analysis! But collaborating effectively requires tools that: get out of the way
of doing ‘stuff’; support teams in negotating conflicts in code; make it easy to share
results; and make it easy to ensure that everyone is ‘on the same page’.

You will find things confusing this week, but they will start to make more sense as
we move further into the module. The key is to keep trying things out and to ask for
help when you get stuck.

Windows Users

Please use Power Shell instead of the Command Prompt (cmd). Power Shell
behaves much more like the Terminal in macOS and Linux, so the results are
more consistent and easier to ‘debug’.

If you haven’t done this already, you need to follow the instructions for installing all
of the tools listed on on the CASA Computing Environment web page. This process
will take time, so please keep reading or work on other things to do while you wait!

1

https://jreades.github.io/sds_env/setup/install_fest.html

Tips on Using the Command Line

If you need help understanding how to use the Command Line or want to be
able to do much more there are a wide range of tutorials available.
Here are some starting points for learning more:

• I needhelp understanding: Software Carpentries is your friend! They have
an entire tutorial titled The Unix Shell.

• I still need help understanding: the Programming Historian is another
good place to look! And they also have an entire tutorial titled An In-
troduction to Bash.

• I want to domore on the Command Line: O’Reilly has produced an online
book called Data Science at the Command Line that will take you much,
much further.

Following Convention

A common convention in programming is to use the <some text or other> to
indicate that you should replace the text between the < and > with something
that makes sense in your context. For example, if you see cd <directory> you
should type cd Documents if you want to change to the Documents directory. If
you see <your username here> you should type jreades if that’s your username.
And so on. You do not type the < or > characters!

1 Running Docker

1.1 Starting Up ‘Right’

One of the most confusing things about starting a Docker container with a “local
volume mount” (i.e. a location on your computer that Docker connects to the con-
tainer’s file system) is that it seems like magic and it’s often hard to understand why
you’re seeing what you are under the work directory.

So before you do anything else please spend a minute in the Terminal (macOS) or
Power Shell (Windows) learning how to get to your home directory and, within that,
to a CASA directory where you can store your work and keep Docker from accessing
data that it shouldn’t.

What we are doing is creating a directory on your computer that you can access from
Docker. This is where you will store your notebooks, data, and any other files that
you need to work with. The ultimate structure we’ll produce this:

2

https://software-carpentry.org/lessons/index.html
https://swcarpentry.github.io/shell-novice/
https://programminghistorian.org/
https://programminghistorian.org/en/lessons/intro-to-bash
https://programminghistorian.org/en/lessons/intro-to-bash
https://datascienceatthecommandline.com/2e/chapter-2-getting-started.html

Figure 1: ‘Target’ Directory Structure

On both a Mac and a PC you should be able to run the following:

1. cd $HOME – this will change directory to your home directory (on a Mac it will
be /Users/<your username>, on a PC it will be something like C:\Users\<your
username>). Hint: cd means ‘change directory’!

2. cd Documents – this will move you into your ‘Documents’ folder. Note: on Win-
dows thismight be called My\ Documents, in which case it’s cd My\ Documents! If
you have set up your computer in another language this might be called some-
thing else, but Power Shell still ‘knows’ which folder should contain your docu-
ments.

3. mkdir CASA – this will create a CASA folder in your home directory.
4. cd CASA – you are now changing into the CASA directory.
5. echo $pwd (PC) or pwd (Mac) – this should show you the ‘full path’ to your new

CASA directory (e.g. /Users/<your username>/Documents/CASA or something like
that).

Leave the Terminal or PowerShell window open! You will need it in a moment.

Perhaps a video will help clarify?

https://www.youtube.com/embed/5IkwUrYTY78

1.2 Configuring the sds2024 Image

During the ‘install festival’ you should have installed Docker and, time permitting,
‘pulled’ the image appropriate to your system. If you haven’t, then you should do so
as a priority now.

1.3 Running Docker

By default, the best way to start Docker is from the Terminal or Power Shell.

1.3.1 On Windows

Using the same Power Shell copy and paste the following all on one line:

docker run --rm -d --name sds2024 -p 8888:8888
-v "$(pwd):/home/jovyan/work" jreades/sds:2024-intel start.sh jupyter lab
--LabApp.password='' --ServerApp.password='' --NotebookApp.token=''

3

https://www.youtube.com/embed/5IkwUrYTY78
https://jreades.github.io/sds_env/setup/install_fest.html

Windows Commands and Docker

$(pwd) is actually a command, you are asking the Power Shell to use the current
working directory* (pwd == print working directory) as the ‘mount point’ for
the work directory. The Command Prompt doesn’t support pwd, but the Power
Shell should. You can check this by simply typing pwd and hitting enter (⏎) to
see if you get an error.

1.3.2 On macOS

Using the same Terminal copy and past the following (change the docker image to
jreades/sds:2024-intel if using an older Intel Mac):

docker run --rm -d --name sds2024 -p 8888:8888 \
-v "$(pwd):/home/jovyan/work" \

jreades/sds:2024-silicon start.sh jupyter lab \
--LabApp.password='' --ServerApp.password='' --NotebookApp.token=''

1.4 How do I Know it Worked?

With Docker running, you will mainly interact with Python through a web page. To
check if it’s running, we just have to visit the web page and see what happens: http:
//localhost:8888/lab/tree/work/. We’ll talk more about exactly what is going on
over the next few weeks, but this should show you a page that looks something like
this (probably with fewer files listed on the left-hand side):

Figure 2: Screenshot of Jupyter Lab

4

http://localhost:8888/lab/tree/work/
http://localhost:8888/lab/tree/work/

See Docker Run (and Run)…

Once you have started a Docker container using any of the above, the machine
will continue running until you either restart the computer or tell Docker to
stop the container. This can consume memory and battery power indefinitely.

2 Setting Up GitHub

Understanding how to use Git and GitHub effectively is a core element of learning to
code. So one of the first things that we are going to do is set you up with an account
and a new repository.

So in order to complete this task you need to do the following (more detailed expla-
nations below):

1. Create a login with GitHub (if you’ve not done so already).
2. Create a new private repository on GitHub.
3. Edit the README.md and .gitignore files for your new repository.
4. Save the changes (this is called a ‘commit’) and explain in a general way what

edits you did.
5. Work out how to compare the original and edited versions of any file in your

browser.

2.1 Your New GitHub Account

It doesn’t really matter which way you do this, but we recommend that you set up
your new GitHub account with both your personal and your UCL email addresses.
GitHub ‘knows’ about educational users and will give you access to more features
for free if you associate a .ac.uk email address to your account. So choose one
email address to start with and then add the other one later.

From a security standpoint you should also enable 2-factor authentication so that
you receive a text message when you log in on a new machine and are asked to
confirm a code.

2.2 Creating a Private Repository

To create a repository, click on the + at the upper-right corner of the GitHub web page
and select New Repository. You might as well call your ‘repo’ fsds or foundations
since that’s a lot shorter than foundations_of_spatial_data_science.

Your ‘Repo’ Name

For the purposes of this tutorial (and all subsequent tutorials) I will assume
that your repository is called fsds. You can call it whatever you like, in which
case you will always need to substitute the name that you chose wherever you
see me write fsds.

5

https://github.com

It’s always helpful to provide some basic information about what’s in the project (e.g.
your notes and practicals for the Foundationsmodule). And finally, make sure you:

1. Change the visibility from Public to Private,
2. Tick Add a README file,
3. Change Add .gitignore from None to template: Python.

Click Create Repository and you should end up on a page that looks like this:

Figure 3: Repository created

Your new repository has been created (on GitHub)!

3 Updating the .gitignore File

The .gitignore file tells Git what files to ignore by default. Unless you force Git to
add an ignored file it will happily live in your local repository alongside files that are
version-controlled and ‘shared’ with GitHub.

The Python template for .gitignore includes a lot of useful files and folders that we
wouldn’t want Git to track for us. But it doesn’t include data. In your web browser,
click on the .gitignore file and then the ‘pencil’ icon on the right to edit it on GitHub.
You should see something like this:

6

Figure 4: Editing the .gitignore file

3.1 Exclude Data Files

We want to make it hard to accidentally add a large data file to our repository.
Git/GitHub isn’t designed for large, binary files (you can’t ‘read’ a Parquet file) and
we assume that data is backed up or available elsewhere, but our code is not! So as
a first step we want to exclude files that are likely to just be ‘data’:

File Type Extension

CSV .csv
Excel .xls, .xlsx
Zip .zip
GZip .gzip
Feather .feather, .geofeather
Parquet .parquet, .geoparquet

Here’s another hint: C extensions are already excluded by the .gitignore file, so
maybe look to see how that’s done to help you figure out how to exlcude .zip, .gz,
and .csv files…

3.2 Exclude a Data Directory

To make it even less like that we accidentally include data, let’s also exclude a data
directory from our repository. As a clue, nearly everything in the Distribution /
packaging section of the .gitignore file is a directory to be excluded from Git.

So how would you indicate that data is a directory? Once you’re sure, add the data
directory!

When you are done, don’t forget to add a ‘commit message’ (e.g. ‘Added data files to
.gitignore’) at the bottom and then click Commit changes.

7

Quick Answer

I don’t want you to get hung up on this one thing in Practical 1, so if you just
can’t make sense of what you’re being asked to do here, have a look at the
Answers at the bottom of this page.

3.3 Check Your Changes

Once you have committed your changes, you should be back to the default view of
the .gitignore file but there should be a message to the effect of Latest commit
<some hexadecimal number> 10 seconds ago and, next to that, a History button.

Click on ‘History’ and let’s go back in time!

Figure 5: The Gitignore history

On the history page you can browse every edit to your file. Whenever you commit a
file, this like taking a snapshot at a point in time. Using the ‘History’ you can compare
two different snapshots in order to see what has changed. This would help you to
work out how you broke something, check that requested changes have been made,
or see how an error might have been introduced.

Viewing Your Commit History

You can mouseover the buttons to see what they do. Why don’t you try to find
See commmit details and check what edits you made to the .gitignore file?
You should see at least three plusses in the history view representing three new
lines in the .gitignore file.

4 Creating Your First Remote File

To get some practice with Markdown let’s write up some notes direclty into our
GitHub repository (aka ‘repo’). You’ll notice that we’ve not yet hit the BIG GREEN
BUTTON marked Add a README… Let’s do that now!

This will take you to an editing page for the new README.md file. You can type directly
into this web page and it will update the repository, but only once you commit your
edits.

8

4.1 Working on Your Markdown

Write your README file using at least the following Markdown features:

• A level-1 header (#)
• A level-3 header (###)
• Italic text (_this is italicised_)
• Bold text (**this is bold**)
• A link ([link text](url))
• An image (![Alt text](image_location))

If you’re unsure how these work, just double-click on this text and you’ll see Mark-
down in a Jupyter notebook. Here’s some sample text to get you started:

Foundations of Spatial Data Science

This repository contains practicals and notes from the _Foundations_ module.

You can find the original [here](https://jreades.github.io/fsds/).

Don’t forget to check out the “Preview” tab!

4.2 Commiting a Change

Once you’re happy with how your text looks and works, it’s time to commit! Scroll
down to where you see something like this (you will see your own GitHub username,
not mine):

Figure 6: GitHub Commit

You can just accept the description (e.g. Create README.md) or you can write your
own. You can also provide an extended description if you choose. Then click Commit
new file and you will see your new README appear.

9

5 Setting Up Git Locally

I have created a video on Microsoft Streams that runs you through the tasks below.
You can refer to it if you find the written instructions hard to follow for any reason
or would like a visual check that you’re doing the right thing!

5.1 Configuring Defaults

The first thing to do is set up the default username and email for GitHub. These
can be changed on a project-by-project basis, but to begin with it’s best to set up
the global defaults. Using either the Terminal or Bash enter the following (replacing
<...> with your details):

git config --global user.email '<your GitHub email address>'
git config --global user.name '<your GibHub username>'

Recall: Convention!

As a reminder, <...> is a convention in programming to indicate that you should
replace the text between the < and > with something that makes sense in your
context. For example, if you see '<your GitHub email address>' you should
type, for example, 'j.reades@ucl.ac.uk'. You do not include the < or > charac-
ters!

5.2 Creating a Personal Access Token

For copying changes up to/down from GitHub, youmust use a Personal Access Token.
This is like issuing special passwords that allow only limited access to parts of your
GitHub account.

To create a Personal Access Token:

• Visit your GitHub User Page (e.g. github.com/jreades)
• Click on your user icon (at the top-right corner of the page) and click the Set-
tings link (near the bottom on the right side of the page).

• Scroll down the settings page until you get to Developer settings (near the
bottom on the left side of the page).

• Click the Developer settings link to reach the ‘apps’ page and then click on
the Personal access tokens link.

• Select Tokens (classic) from the left-hand menu and then click the Generate
new token button.

Types of Personal Tokens

You now need to choose the type of token to generate. I personally find the old
type of tokens easier to work with because the ‘new’ fine-grained tokens are
intended to support complex workflows when all we’re trying to do is allow one
computer to push/pull from Git.

10

https://web.microsoftstream.com/video/29a31977-ff9e-4b53-92d3-ee3bb2a769f6
https://github.com/jreades
https://github.com/settings/profile
https://github.com/settings/apps

• Generate new token (classic) for general use token and then specify the
following:

– I’d suggest writing FSDS Token or something similar in the Note section.
– Set the expiration to 90 days
– Click the repo tickbox for ‘Full control of private repositories’.

• Save the resulting token somewhere safe as you will need it again! (e.g. a Note
on your phone, a password manager, etc.).

Keep your Personal Token Safe

You will need it at least twice in this tutorial and may want to use it again on
other computers. You can always create a new one, but then you’ll need to
update every computer where you access your GitHub repositories.

5.3 Cloning Your Repository

Now we are going to clone (i.e. copy) the repository that you just created on to your
own computer. This is surprisingly straightforward provided that you have installed
the command line tools.

On your private repository page, click on the green button labeled Code visible in the
screenshot below:

Figure 7: Screenshot of cloning interface

You should then copy your HTTPSURL (inmy screenshot it’s https://github.com/jreades/i2p.git).

Now go back to the Terminal or PowerShell that you left open earlier and type the fol-
lowing (replacing <the_url_that_you_copied_from_the_browser> with the URL that
you copied from GitHub):

git clone <the_url_that_you_copied_from_the_browser>

The first time that you do this, you will need to provide login information. Use your
GitHub username and the Personal Access Token that you just created. On your
computer you should now see a newdirectory with the same name as your repository.
For example: Documents/CASA/fsds.

11

5.4 Storing Credentials & ‘Pulling’

You can now activate the credtial helper that will store your Personal Access Token
(though you should still keep your secure note!):

cd fsds
git config credential.helper store
git pull

When you type git pull you should be asked again for your username and password.
You should (again) use the Personal Access Token as your password. You should not
be asked again for pushing or pulling data into this GitHub repository. If you are
not asked for your Personal Access Token then this likely means that your token is
already saved and ready to use on all future ‘actions’.

5.5 Jupyter < - > Your Computer

If you now go back to Jupyter, you should now see that the work directory is actually
the same as the CASA directory that you created earlier; you know this because you
can now see an fsds directory containing that wasn’t there before.

This is because Docker is ‘mounting’ the work directory in the container to the CASA
directory on your computer. This means that you can save files in the work directory
in Jupyter and they will be saved in the CASA directory on your computer.

Organising Your Work

There are any number of ways to organise your CASA work, what’s important is
that you are logical about things like names and hierarchy. This will make it
much easier to access files and notebooks using Docker, Quarto, and Python.

5.6 Adding a Local File to Your Repository

In order to tie together the different concepts covered above, we are now going add
Practical 1 (this practical) to your GitHub repo. The easiest way to do this is to down-
load the notebook by clicking on the Jupyter link on the right side of this page. So
the process is:

1. Click on the Jupyter link to save this file to your computer as a notebook with
the extension .ipynb.

2. Move the file to your new repository folder (e.g. $HOME/work/Documents/CASA/fsds/).

File Extensions

It is highly likely that your browser automatically added a .txt extension when
you saved the Notebook file to your computer. You need to remove that ending
to your file name or Jupyter won’t be able to run it. You can rename a file by
either doing it directly in the Finder/Windows Explorer, or bymoving (bash: mv)
the file: mv <notebook_name>.ipynb.txt <notebook_name>.ipynb

12

In the Terminal/PowerShell we now need add this file to Git so that it knows to keep
track of it. Unlike Dropbox or OneDrive, just putting a file in a repo directory does
not mean that Git will pay attention to it:

Assuming that you are 'in' the 'fsds' directory...
git add Practical-01-Getting_Started.ipynb
git commit -m "Adding notebook 1 to repo."

Add, Commit, Push, Repeat

Unless you have added and committed a file to Git then it is not version con-
trolled.
Unless you have pushed your committed files to GitHub they are only backed
up locally.

5.7 Status Check

Wenowwant to check that the file has been successfully added to Git. We do this with
a status check in the repository directory (i.e. cd $HOME/work/Documents/CASA/fsds/):

git status

You should see something like:

On branch master
Your branch is ahead of 'origin/master' by 1 commit.
(use "git push" to publish your local commits)

This is telling you that your local computer is 1 commit (the one that you just com-
pleted) ahead of the ‘origin’, which is on GitHub. GitHub doesn’t have to be the
origin (nor does the repository have to be one that we created in order to be an ori-
gin) but conceptually and practically it’s easier to create new repositories on GitHub
and clone them to our computer.

5.8 Keep Pushing

To synchronise the changes we just made, let’s follow Git’s advice:

git push

You should see something like the below series of messages (the exact details will
differ, but the ‘Enumerating, Counting, etc’ messages will be the same):

Enumerating objects: 5, done.
Counting objects: 100% (5/5), done.
Delta compression using up to 8 threads
Compressing objects: 100% (3/3), done.
Writing objects: 100% (3/3), 306 bytes | 306.00 KiB/s, done.

13

Total 3 (delta 2), reused 0 (delta 0), pack-reused 0
remote: Resolving deltas: 100% (2/2), completed with 2 local objects.
remote: This repository moved. Please use the new location:
remote: https://github.com/jreades/fsds.git
To https://github.com/jreades/fsds.git

7410d0e..45aa80a master -> master

If you now go over to your browser and visit your GitHub repo page (e.g.
https://github.com/jreades/fsds) — pressing the Reload button if you had
the page open already — then you should see that the file you added on your
computer is also showing up on the GitHub site as well! This means it’s now fully
version-controlled and backed-up.

Keep Pushing

Unless have pushed your commits to GitHub they are only stored on your com-
puter. So your files can be properly version-controlled, but without a push if
you lose your computer you still lose everything!

5.9 More About Git

From here on out you can keep changes made either directly on GitHub or locally on
your computer (or any other computer to which you clone your repository) in synch
by using git push (to push changes from a local computer up to the origin on GitHub)
and git pull (to pull changes available on the origin down to the local computer).

That said, you can do a lotmore than just push/pull to your own repository and this
Twitter thread leads to a lot of useful additional resources to do with Git:

• Introduction to Version Control with Git on the Programming Historian web site
is written for digital humanities researchers so it’s intended to be accessible.

• Oh My Git is an ‘open source game’ to help you learn Git.
• Git Meets Minesweeper? is apparently a ‘thing’.
• Visual Git Reference if you think visually or just want to check your understand-
ing.

• Version Control with Git is a Software Carpentries lesson that takes you quickly
through the important elements of getting set up and started. It would be a
good refresher.

• Altassian’s Documentation provides more detailed explanations of the com-
mands and options.

• Learn Git Branching focusses on a key concept for software collaboration.
• Git Immersion provides a ‘guided tour’ of the fundamentals.

Tip

For the Group Work every member of your group will need to make contribu-
tions to a GitHub repository. This will require learning how to invite others to
be contributors, how to merge changes, and how to deal with conflicts of the
coding kind.

14

https://twitter.com/ChrisStaud/status/1574277175527735296
https://twitter.com/ChrisStaud/status/1574277175527735296
https://programminghistorian.org/en/lessons/retired/getting-started-with-github-desktop
https://ohmygit.org/
https://profy.dev/project/github-minesweeper
http://marklodato.github.io/visual-git-guide/index-en.html
https://swcarpentry.github.io/git-novice/
https://www.atlassian.com/git/tutorials
https://learngitbranching.js.org
https://gitimmersion.com
https://jreades.github.io/fsds/assessments/group.html

6 Setting up a GitHub Web Site

Bonus Content

It is not core to this module, but if you’d like to really make the most of Git, why
not create a GitHub.io web site? Using Markdown (for the most bare bones ef-
fect) or code (via Quarto), you can render and push a web site to <your GitHub
username>.github.io/. You might find this useful for creating a simple port-
folio, blog, or other collection of ‘outputs’ that you can use to demonstrate to
employers that you know your way around.

Rather than create a GitHub.io site using your Foundations repository, we’d rec-
ommend building one in the separate ‘main’ repository so that, for example,
jreades.github.io, returns a web page.

To do this, the steps are detailed here, but read on to get an overview:

1. On the GitHub web site, create a new repository called <your user-
name>.github.io (where <your username> is whatever your github username is).
So for us, it would mean creating a new repository called jreades.github.io.

2. For your first web site, try setting up GitHub pages without specifying a branch:
this way, anything that you put into your GitHub repository will show up on the
public web site. Later, when you are more comfortable with GitHub, you may
wish to switch to using a branch so that you can do work without always and
immediately updating the web site.

3. One you’ve followed the GitHub instructions for publishing a web site, you
should clone the site to your computer.

4. After cloning the site to your computer, try making a change to the README.md
file and pushing the change back to GitHub. After a minute or two (possibly up
to 10 minutes) you should see your web page update!

Congratulations, you can now publish a web site using nothing more than Mark-
down.

As you develop your Markdown, coding, and Quarto skills, you might also want to
look into publishing to GitHub pages from Quarto. That’s how we build the entire
Foundations web site, so there’s a lot further that you can go with this…

7 Other Ways of Using Docker

Advanced Content

The two techniques below are: 1) advanced; and 2) not essential to using Docker
for this module. We will offer limited support for this if we can, but you will be
a lower priority for support since these are entirely at your discretion.

There are two other ways of running Docker:

15

https://jreades.github.io
https://docs.github.com/en/pages/getting-started-with-github-pages/creating-a-github-pages-site#creating-a-repository-for-your-site
https://docs.github.com/en/pages/getting-started-with-github-pages/creating-a-github-pages-site#creating-a-repository-for-your-site
https://quarto.org/docs/publishing/github-pages.html

1. If you have a Mac or have installed a full Linux system for WSL2 (e.g. Ubuntu)
on your Windows machine, then there is a ‘bash script’ and configuration file
as detailed here that we created for you. This is the easiest way to start/stop
Docker.

2. Using VSCode as detailed here to create a new VSCode project that is ‘bound’ to
the Docker image. This will give you a very different experience of using Docker
and Jupyter, but is appropriate for those who want to use an IDE to write code.

7.1 Other Useful Resources

• GitHub Markdown Guide
• Common Mark
• Markdown Guide, which helpfully includes do’s and don’ts.

Finally, these are a bit overkill but the bits about setting up and installing git,
bash/zsh, and so on may come in handy later:

• Setting Up a New Mac
• Beginner’s Guide to Setting Up Windows 10
• Setting up Windows without Linux
• Microsoft Python Setup Guide

8 Answers

Normally, we will provide ‘answers’ later in the week, but for thisweek it makes sense
to provide them right away if you need them…

8.1 .Gitignore

The main thing you should notice is the pattern: * means ‘anything’, while / at the
end of a line implies a directory. So the following four lines should be added to your
.gitignore file:

*.zip
*.gz
*.csv
*.gzip
*.feather
*.geofeather
*.parquet
*.geoparquet
data/

That’s it.

16

https://jreades.github.io/sds_env/docker/#running-everything-script
https://jreades.github.io/sds_env/docker/#vscode-integration
https://guides.github.com/features/mastering-markdown/
https://commonmark.org/help/
https://www.markdownguide.org/basic-syntax/
https://www.taniarascia.com/setting-up-a-brand-new-mac-for-development/
https://medium.com/@mfosullivan/a-beginners-guide-to-setting-up-a-modern-web-development-environment-on-windows-10-4d75cd94cde8
https://dev.to/jozsefsallai/how-i-ve-set-up-my-windows-machine-as-a-development-environment-without-wsl-2kcl
https://docs.microsoft.com/en-us/windows/python/beginners

	Running Docker
	Setting Up GitHub
	Updating the .gitignore File
	Creating Your First Remote File
	Setting Up Git Locally
	Setting up a GitHub Web Site
	Other Ways of Using Docker
	Answers

