
Practical 4: Efficient Code
Packages, Decorators, and Functions

Table of contents

1 Tackling Programming Problems 1

2 Why ‘Obvious’ is Not Always ‘Right’ 11
In this notebook we are going to look in more detail at how we can reduce, reuse,
and recycle our code to make our lives easier and our code more efficient.

1 Tackling Programming Problems

Connections

You will find links here to the Code Camp sessions on Functions and Packages,
as well as to this week’s lectures on Functions and Packages.

Difficulty: Medium.

Let’s now think about how to approach problems in programming (with code) and
how that might differ from other ways of thinking.

The problem we will use here as an example is: download a data file that we know
is hosted on a web site and output some information about those data. This sounds
hard. It is hard when you’re just starting out in programming. But it is not hard for a
computer… iff we can figure out what to tell it to do andmake use of work that other
people have done for us!

1.0.1 What Do We Do? Break It Down!

Step 1. Analyse the Problem
The first step to writing a program is thinking about your goal and the steps required
to achieve that. We don’t write programs like we write essays: all at once by writing
a whole lot of code and then hoping for the best when we hit ‘submit’.

When you’re tackling a programming problem you break it down into separate, sim-
pler steps, and then tick them off one by one. Doing this gets easier as you become

1

https://jreades.github.io/code-camp/lessons/Functions.html
https://jreades.github.io/code-camp/lessons/Packages.html
https://jreades.github.io/fsds/sessions/week3.html#lectures
https://jreades.github.io/fsds/sessions/week3.html#lectures

more familiar with programming, but it remains crucial and, in many cases, good
programmers in large companies spend more time on design than they do on actual
coding.

Step 2. Functions & Packages
We have discussed how functions are a useful programming tool to enable us to re-
use chunks of code. Basically, a function is a way to do something to something in
a portable, easy-to-use little bundle of code.

Some steps in a program are done somany times by somany people that, eventually,
someone writes a package that bundles up those operations into something easy to
use that saves you having to figure out the gory details. Reading a file (even one on a
computer halfway round the world) is one of those things. Making sense of the data
in that file for you is probably not.

Figure 1: xkcd: Easy vs. Hard

To a computer, reading data from a remote location (e.g. a web site halfway around
the world) is not really any different from reading one that’s sitting on your your local
hard drive (e.g. on your desktop). To simplify things a great deal: the computer really

2

just needs to know the location of the file and an appropriate protocol for accessing
that file (e.g. http, https, ftp, local…) and then a clever programming language like
Python will typically have packages that can kind of take of the rest.

In all cases – local and remote – you use the package to handle the hard bit of know-
ing how to actually ‘read’ data (because all files are just 1s and 0s of data) at the
device level and then Python gives you back a ‘file handle’ that helps you to achieve
things like ‘read a line’ or ‘close an open file’. You can think of a filehandle as some-
thing that gives you a ‘grip’ on a file-like object no matter where or what it is, and
the package is the way that this magic is achieved.

Step 3. Look for Ways to Recycle
Always look for ways to avoid reinventing the wheel. This is where Python’s packages
(or R’s for that matter) come into their own. If it’s something that programmers often
need to do, then chances are that someone has written a package to do it!

The point of packages is that they can help us to achieve quite a lot very quickly
since we can just make use of someone else’s code. In the same way that we won’t
mark you down for Googling the answer to a coding question, we alsowon’t mark you
down for using someone else’s package to help you get going with your programming.
That’s the whole point!
Often, if you’re not sure where to start, Google (or StackOverflow) is the place to
go:

how to read text file on web server python

Boom!

Step 4. Make a Plan
OK, so we need to break this hard problem down into something simpler. We can do
this by thinking about it as three separate steps:

1. We want to read a remote file (i.e. a text file somewhere the planet),
2. We want to turn it into a local data structure (i.e a list or a dictionary),
3. We want to perform some calculations on the data (e.g. calculate the mean,

find the easternmost city, etc.).

We can tackle each of those in turn, getting the first bit working, then adding the
second bit, etc. It’s just like using lego to build something: you take the same pieces
and assemble them in different ways to produce different things.

1.1 Reading a Remote File

So, we are going to download a file from GitHub, but we aren’t going to to try to turn
it into data or otherwise make ‘sense’ of it yet, we just want to read it. We are then
going to build from this first step towards the rest of the steps!

Because we’re accessing data from a ‘URL’ we need to use the urlopen function from
the urllib.request package. If you’re wondering how we know to use this function

3

https://www.google.co.uk/search?q=how+to+read+text+file+on+web+server+python&oq=how+to+read+text+file+on+web+server+python&aqs=chrome..69i57.629j0j7&sourceid=chrome&ie=UTF-8
https://github.com/jreades/fsds/blob/master/data/src/Wikipedia-Cities-simple.csv
https://docs.python.org/3.0/library/urllib.request.html?highlight=urlopen#urllib.request.urlopen
https://docs.python.org/3.0/library/urllib.request.html

and package, you might google something like: read remote csv file python 3 which
in turn might get you to a StackOverflow question and answer like this.

from urllib.request import urlopen
help(urlopen)

Help on function urlopen in module urllib.request:

urlopen(url, data=None, timeout=<object object at 0xffff91a64800>, *, cafile=None, capath=None, cadefault=False, context=None)
Open the URL url, which can be either a string or a Request object.

data must be an object specifying additional data to be sent to
the server, or None if no such data is needed. See Request for
details.

urllib.request module uses HTTP/1.1 and includes a "Connection:close"
header in its HTTP requests.

The optional *timeout* parameter specifies a timeout in seconds for
blocking operations like the connection attempt (if not specified, the
global default timeout setting will be used). This only works for HTTP,
HTTPS and FTP connections.

If *context* is specified, it must be a ssl.SSLContext instance describing
the various SSL options. See HTTPSConnection for more details.

The optional *cafile* and *capath* parameters specify a set of trusted CA
certificates for HTTPS requests. cafile should point to a single file
containing a bundle of CA certificates, whereas capath should point to a
directory of hashed certificate files. More information can be found in
ssl.SSLContext.load_verify_locations().

The *cadefault* parameter is ignored.

This function always returns an object which can work as a
context manager and has the properties url, headers, and status.
See urllib.response.addinfourl for more detail on these properties.

For HTTP and HTTPS URLs, this function returns a http.client.HTTPResponse
object slightly modified. In addition to the three new methods above, the
msg attribute contains the same information as the reason attribute ---
the reason phrase returned by the server --- instead of the response
headers as it is specified in the documentation for HTTPResponse.

For FTP, file, and data URLs and requests explicitly handled by legacy
URLopener and FancyURLopener classes, this function returns a
urllib.response.addinfourl object.

Note that None may be returned if no handler handles the request (though
the default installed global OpenerDirector uses UnknownHandler to ensure

4

https://stackoverflow.com/questions/36965864/opening-a-url-with-urllib-in-python-3

this never happens).

In addition, if proxy settings are detected (for example, when a *_proxy
environment variable like http_proxy is set), ProxyHandler is default
installed and makes sure the requests are handled through the proxy.

As you can see, there is lot of information here about how things work. A lot of
it won’t make much sense at the moment. That’s ok. Some of this doesn’t make
much sense to me, but that’s because this is the full documentation from Python
so it’s trying to cover all the bases. You don’t need to read every line of this, what
you are looking is information about things like the ‘signature’ (what parameters the
function accepts) and its output. Of course, you can also just Google it!

Tip

Remember that you can use dir(...) and help(...) to investigate what a
package offers. You can also get help in Jupyter by typing ? before the function
that you want to call.

URLError?

If you are working behind a firewall (esp. if working on this practical in, say,
China) then there is a chance you will get a URLError (<urlopen error [Errno
110044] getaddrinfo failed>). This is a ‘proxy error’ and in this case you may
need to configure your environment as follows:

import os
os.environ['HTTP_PROXY'] = 'http://127.0.0.1:10809'
os.environ['HTTPS_PROXY'] = 'http://127.0.0.1:10809'

Before you start working on the code, why not open the data file directly in your
browser? It’s pretty small, and it will give you a sense of what is going on.

from urllib.request import URLError
from urllib.request import urlopen

Given the info you were given above, what do you
think the value of 'url' should be? What
type of variable is it? int or string?
url = 'https://raw.githubusercontent.com/jreades/fsds/master/data/src/Wikipedia-Cities-simple.csv'

Read the URL stream into variable called 'response'
using the function that we imported above
try:

response = urlopen(url)
except URLError as e:

print("Unable to connect to URL!")
print(e)

You might want to explore what `__class__` and `__name__`
are doing, but basically the give us a way of finding out what

5

https://stackoverflow.com/questions/7334199/getaddrinfo-failed-what-does-that-mean
https://stackoverflow.com/a/28153935
https://raw.githubusercontent.com/jreades/fsds/master/data/src/Wikipedia-Cities-simple.csv
https://raw.githubusercontent.com/jreades/fsds/master/data/src/Wikipedia-Cities-simple.csv

is 'behind' more complex variables

Now read from the stream, decoding so that we get actual text
raw = response.read()

print(f"'raw' variable is of type: '{raw.__class__.__name__}'.")
print(f"Raw content is:\n{raw[:75]}...\n")

data = raw.decode('utf-8')

print(f"'data' variable is of type: '{data.__class__.__name__}'.")
print(f"Decoded content is:\n{data[:75]}...")

Note

Notice that the raw data has the format b'...' with all of the data seemingly
on one line, while the decoded version in data is ‘correctly’ structured with
lines! The ‘raw’ data is in bytecode format which is not, strictly, a string. It only
becomes a string when we ‘decode it’ to utf-8 (which is the ‘encoding’ of text
that supports most human languages). While the computer doesn’t particularly
care, we do!

Remember that you can treat strings as lists, so when we print below we cut off the
output using the list[:<Some Number>] syntax.

print(f"There are {len(data)} characters in the data variable.")
print(f"The first 125 characters are: '{data[:125]}'") # Notice that '\n' count here!

There are 352 characters in the data variable.
The first 125 characters are: 'City,Population,Latitude,Longitude
Perth,45770,56.39583,-3.43333
Armagh,14777,54.3499,-6.6546
Dundee,147268,56.462,-2.9707'

So this is definitely text, but it doesn’t (yet) look entirely like the datawe see because
it’s still just one long string, and not data which has individual records on each line.
To split the text into individual lines, we can use the handily named .splitlines()
method (more on methods below):

Question

rows = ??.splitlines()
print(f"'rows' variable is of type: {rows.__class__.__name__}'.")

Note now, how the data variable has type list. So to view the data as we see them
in the original online file, we can now use a for loop to print out each element of
the list (each element being a row of the original online file):

6

Question

print(f"There are {??} rows of data.")
print("\n".join(??[0:2])) # New syntax alert! notice we can *join* list elements

That’s a little hard to read, though something has clearly changed. Let’s try printing
the last row:

print(rows[-1])

Bangor,18808,53.228,-4.128

Congratulations! You’ve now read a text file sitting on a server in, I think, Canada
and Python didn’t care. You’ve also converted a plain-text file to a row-formatted
list.

1.2 Text into Data

We now need to work on turning the response into useful data. We got partway there
by splitting on line-breaks (splitlines()), but now we need to get columns for each
line. You’ll notice that we are dealing with a CSV (Comma-Separated Value) file and
that the format looks quite simple… So, in theory, to turn this into data we ‘just’ need
to split each row into separate fields using the commas.

There’s a handy function associated with strings called split:

print('abcdefgh'.split('d'))

['abc', 'efgh']

You can also investigate further how the split function works using:

help('abcdefgh'.split)

Help on built-in function split:

split(sep=None, maxsplit=-1) method of builtins.str instance
Return a list of the substrings in the string, using sep as the separator string.

sep
The separator used to split the string.

When set to None (the default value), will split on any whitespace
character (including \n \r \t \f and spaces) and will discard
empty strings from the result.

maxsplit
Maximum number of splits.
-1 (the default value) means no limit.

7

Splitting starts at the front of the string and works to the end.

Note, str.split() is mainly useful for data that has been intentionally
delimited. With natural text that includes punctuation, consider using
the regular expression module.

So this seems like a good solution to turn our text into data:

test = rows[-1].split(',')
print(test)
print(f"The population of {test[0]} is {int(test[1]):,}")

['Bangor', '18808', '53.228', '-4.128']
The population of Bangor is 18,808

I’d say that we’re now getting quite close to something that looks like ‘real data’: I
know how to convert a raw response from a web server into a string, to split that
string into rows, and can even access individual elements from a row!

1.3 The Advantages of a Package

Caution

There are two problems to the data.splitlines() and row.split(',') ap-
proach! One of them is visible (though not obvious) in the examples above,
the other is not.

1. Remember that 10 and '10' are not the same thing. To comma-format the
population of Sheffield you’ll see that I had to do int(...) in order to turn
'685368' into a number. So our approach so far doesn’t know anything about
the type of data we’re working with.

2. We are also implicitly assuming that commas can only appear at field bound-
aries (i.e. that they can only appear to separate one column of data from the
next). In other words, just using split(',') doesn’t work if any of the fields
can themselves contain a comma!

3. There’s actually a third potential issue, but it’s so rare that we would need
to take a completely different approach to deal with it: we are also assum-
ing that newlines (\n) can only appear at record boundaries (i.e. that the can
only appear to separate one row of data from the next). In those cases, us-
ing splitlines() also doesn’t work, but this situation is (thankfully) very rare
indeed.

This is where using code that someone elsewho is muchmore interested (and knowl-
edgeable) has written and contributed is helpful: we don’t need to think through
how to deal with this sort of thing ourselves, we can just find a library that does
what we need and make use of its functionality. I’ve given you the skeleton of the
answer below, but you’ll need to do a little Googling to find out how to "read csv
python".

8

Note: For now just focus on problem #2.

from urllib.request import urlopen
import csv

url = 'https://raw.githubusercontent.com/jreades/fsds/master/data/src/Wikipedia-Cities-simple.csv'
response = urlopen(url)
raw = response.read()

Now take the raw data, decode it, and then
pass it over to the CSV reader function
csvfile = csv.reader(raw.decode('utf-8').splitlines())

urlData = [] # Somewhere to store the data
for row in csvfile:

urlData.append(row)

print("urlData has " + str(len(urlData)) + " rows and " + str(len(urlData[0])) + " columns.")
print(urlData[-1]) # Check it worked!

If it worked, then you should have this output:

urlData has 11 rows and 4 columns.
['Bangor', '18808', '53.228', '-4.128']

To you that might look a lot worse that the data that you originally had, but to a
computer that list-of-lists is something it can work with; check it out:

for u in urlData[1:6]: # For each row in the first 5 items in list
print(f"The city of '{u[0]}' has a population of {int(u[1]):,}") # Print out the name and pop

The city of 'Perth' has a population of 45,770
The city of 'Armagh' has a population of 14,777
The city of 'Dundee' has a population of 147,268
The city of 'Colchester' has a population of 194,706
The city of 'Salisbury' has a population of 40,302

Note

Why did I use urlData[1:] instead of urlData?
If you print urlData[0] you’ll see that this is the ‘header’ row that tells us what
each column contains! So if we try to convert the column name to an integer
(int(u[1])) we will get an error!
The advantage of using the csv library over plain old string.split is that the
csv library knows how to deal with fields that contain commas (e.g. "Cardfiff,
Caerdydd" or "An Amazing 4 Bedroom Home, Central London, Sleeps 12") and
so is much more flexible and consistent that our naive split approach. The
vast majority of common tasks (reading certain types of files, getting remote
files, etc.) have libraries that do exactly what you want without you needing
to write much code yourself to take advantage of it. You should always have

9

a look around online to see if a library exists before thinking that you need to
write everything/anything from scratch. The tricky part is knowing what words
to use for your search and how to read the answers that you find…

Let’s try this with a ‘bigger’ data set… In an ideal world, the ‘power’ of code is that
once we’ve solved the problem once, we’ve solved it more generally as well. So let’s
try with the ‘scaled-up’ data set and see waht happens!

from urllib.request import urlopen
import csv

url = "https://raw.githubusercontent.com/jreades/fsds/master/data/src/Wikipedia-Cities.csv"
response = urlopen(url)
raw = response.read()

csvfile = csv.reader(raw.decode('utf-8').splitlines())

urlData = [] # Somewhere to store the data

for row in csvfile:
urlData.append(row)

print(f"urlData has {len(urlData)} rows and {len(urlData[0])} columns.")

for u in urlData[70:]: # For each row in the list
print(f"The city of '{u[0]}' has a population of {u[1]}") # Print out the name and pop

What mistake have I made here?

I have assumed that, just because the files have similar names, they must also
have similar layouts!

print(f"The URL's data labels are: {', '.join(urlData[0])}")

The URL's data labels are: City, Population, Latitude, Longitude

1.4 Insight!

So, although the code was basically the same for both of these files (good), we would
need to change quite a bit in order to print out the same information from different
versions of the same data. So our code is rather brittle.
One of the issues is that our instincts about how to manage data doesn’t align with
how the computer can most efficiently manage it. We make the mistake of thinking
that the computer needs to do things that same way that we do when reading text
and so assume that we need to:

1. Represent the rows as a list.
2. Represent the columns as a list for each row.

10

This thinking suggests that the ‘right’ data structure would clearly be a list-of-lists
(LoLs!), but if you understand what happened here then the next section will make
a lot more sense!

2 Why ‘Obvious’ is Not Always ‘Right’

� Connections

This section builds on the material covered by the DOLs to Data lecture.

Difficulty: Hard.

But you need to be careful assuming that, just because something is hard for you to
read, it’s also hard for a computer to read! The way a computer ‘thinks’ and the way
that we think doesn’t always line up naturally. Experienced programmers can think
their way around a problem by working with the computer, rather than against it.

Some issues to consider:

• Is the first row of data actually data, or is it about data?
• Do we really care about column order, or do we just care about being able to
pick the correct column?

Let’s apply this approach to the parsing of our data…

2.1 Understanding What’s an ‘Appropriate’ Data Structure

If you stop to think about it, then our list-of-lists approach to the data isn’t very easy
to navigate. Notice that if the position or name of a column changes then we need
to change our program every time we re-run it! It’s not very easy to read either since
we don’t really know what u[5] is supposed to be. That way lies all kinds of potential
errors!

Also consider that, in order to calculate out even a simple aggregate such as the
sum of a field for all rows we need to step through a lot of irrelevant data as well:
we have to write a for loop and then step through each row with an ‘accumulator’
(somewhere to store the total). That’s slow.

That doesn’t make much sense since this should all be easier and faster in Python
than in Excel, but right now it’s harder, and quite possibly slower as well! So how
does the experienced programmer get around this? ‘Simple’ (i.e. neither simple, nor
obvious, until you know the answer): she realises that the data is organised the
wrong way! We humans tend to think in rows of data: this apartment has the follow-
ing attributes (price, location, etc.), or that city has the following attributes (popula-
tion, location). We read across the row because that’s the easiest way for us to think
about it. But, in short, a list-of-lists does not seem to be the right way to store this
data!

11

https://jreades.github.io/fsds/sessions/week3.html#lectures

Crucially, a computer doesn’t have to work that way. For a computer, it’s as easy to
read down a column as it is to read across a row. In fact, it’s easier, because each
column has the same type of data: one column contains names (strings), another
column contains prices (integers), and other columns contain other types of data
(floats, etc.). Better still, the order of the columns often doesn’t matter as long as
we know what the columns are called: it’s easier to ask for the ‘description column’
than it is to ask for the 6th column since, for all we know, the description column
might be in a different place for different files but they are all (relatively) likely to
use the ‘description’ label for the column itself.

2.1.1 A Dictionary of Lists to the Rescue

So, if we don’t care about column order, only row order, then a dictionary of lists
would be a nice way to handle things. And why should we care about column order?
With our CSV files above we already saw what a pain it was to fix things when the
layout of the columns changed from one data set to the next. If, instead, we can just
reference the ‘description’ column then it doesn’t matter where that column actually
is. Why is that?

Well, here are the first four rows of data from a list-of-lists for city sizes:

myData = [
['id', 'Name', 'Rank', 'Longitude', 'Latitude', 'Population'],
['1', 'Greater London', '1', '-18162.92767', '6711153.709', '9787426'],
['2', 'Greater Manchester', '2', '-251761.802', '7073067.458', '2553379'],
['3', 'West Midlands', '3', '-210635.2396', '6878950.083', '2440986']

]

Now, here’s how it would look as a dictionary of lists organised by column, and not
by row:

myData = {
'id' : [0, 1, 2, 3, 4, 5],
'Name' : ['London', 'Manchester', 'Birmingham','Edinburgh','Inverness','Lerwick'],
'Rank' : [1, 2, 3, 4, 5, 6],
'Longitude' : [-0.128, -2.245, -1.903, -3.189, -4.223, -1.145],
'Latitude' : [51.507, 53.479, 52.480, 55.953, 57.478, 60.155],
'Population' : [9787426, 2705000, 1141816, 901455, 70000, 6958],

}

print(myData['Name'])
print(myData['Population'])

['London', 'Manchester', 'Birmingham', 'Edinburgh', 'Inverness', 'Lerwick']
[9787426, 2705000, 1141816, 901455, 70000, 6958]

What does this do better? Well, for starters, we know that everything in the ‘Name’
column will be a string, and that everything in the ‘Longitude’ column is a float, while
the ‘Population’ column contains integers. So that’s made life easier already, but the
real benefit is coming up…

12

2.1.2 Behold the Power of the DoL

Now let’s look at what you can do with this… but first we need to import one more
package that you’re going to see a lot over the rest of term: numpy (Numerical Python),
which is used somuch that most people simply refer to it as np. This is a huge pack-
age in terms of features, but right now we’re interested only in the basic arithmatic
functions: mean, max, and min.

We’ll step through most of these in detail below.

Find the latitude of Manchester:

city = "Manchester"
lat = myData['Latitude'][myData['Name'].index(city)]
print(f"{city}'s latitude is {lat}")

Manchester's latitude is 53.479

Print the location of Lerwick:

Question

city = "Lerwick"
print(f"The town of {city} can be found at " +

f"{abs(myData[??][??])}ºW, {myData['Latitude'][??]}ºN")

Find the easternmost city:

Question

city = myData['Name'][myData[??].index(max(myData[??]))]
print(f"The easternmost city is: {city}")

Find the mean population of the cities using a handy package called numpy:

Question

import numpy as np
mean = np.??(myData['Population'])
print(f"The mean population is: {mean}")

Warning

Stop! Look closely at what is going on. There’s a lot of content to process in the
code above, so do not rush blindly on if this is confusing. Try pulling it apart
into pieces and then reassemble it. Start with the bits that you understand and
then add complexity.

13

We’ll go through each one in turn, but they nearly all work in the same way and the
really key thing is that you’ll notice that we no longer have any loops (which are slow)
just index or np.<function> (which is very fast).

2.1.3 The Population of Manchester

The code can look pretty daunting, so let’s break it down into two parts. What would
you get if you ran just this code?

myData['Population'][1]

2705000

Remember that this is a dictionary-of-lists (DoL). So, Python first looks for a key
named Population in the myData dictionary. It finds out that the value associated
with this key is a list and in this example, it just pulls out the second value (index 1).
Does that part make sense?

Now, to the second part:

myData['Name'].index('Manchester')

1

Here we look in the dictionary for the key Name and find that that’s also a
list. All we’re doing here is asking Python to find the index of ‘Manchester’ for
us in that list. And myData['Name'].index('Manchester') gives us back a 1,
so instead of just writing myData['Population'][1] we can replace the 1 with
myData['Name'].index('Manchester')! Crucially, notice the complete absence of a
for loop?

Does that make sense? If it does then you should be having a kind of an � moment
because what we’ve done by taking a column view, rather than a row view, is to make
Python’s index() command do the work for us. Instead of having to look through
each row for a field that matches ‘Name’ and then check to see if it’s ‘Manchester’,
we’ve pointed Python at the right column immediately and asked it to find the match
(which it can do very quickly). Once we have a match then we also have the row
number to go and do the lookup in the ‘Population’ column because the index is the
row number!

2.1.4 The Easternmost City

Where this approach really comes into its own is on problems that involve maths. To
figure out the easternmost city in this list we need to find the maximum Longitude
and then use that value to look up the city name. So let’s do the same process of
pulling this apart into two steps. Let start with the easier bit:

myData['Name'][0]

14

'London'

That would give us the name of a city, but we don’t just want the first city in the list,
we want the one with the maximum longitude. To achieve that we need to some-
how replace the 0 with the index of the maximum longitude. Let’s break this down
further:

1. We first need to find the maximum longitude.
2. We then need to find the index of that maximum longitude.

So Step 1 would be:

max_lon = max(myData['Longitude'])

Because the max(...) helps us to find the maximum longitude in the Longitude list.
Now that we have that we can proceed to Step 2:

myData['Longitude'].index(max_lon)

0

So now we ask Python to find the position of max_lon in the list. But rather than
doing this in two steps we can combine into one if we write it down to make it easier
to read:

myData['Longitude'].index(
max(myData['Longitude'])

)

0

There’s the same .index which tells us that Python is going to look for something
in the list associated with the Longitude key. All we’ve done is change what’s inside
that index function to max(myData['Longitude']). This is telling Python to find the
maximum value in the myData['Longitude'] list. So to explain this in three steps,
what we’re doing is:

• Finding the maximum value in the Longitude column (we know there must be
one, but we don’t know what it is!),

• Finding the index (position) of that maximum value in the Longitude column
(now that we know what the value is!),

• Using that index to read a value out of the Name column.

I am a geek, but that’s pretty cool, right? In one line of code we managed to quickly
find out where the data we needed was even though it involved three discrete steps.
Think about how much work you’d have to do if you were still thinking in rows, not
columns!

15

2.1.5 The Location of Lerwick

Lerwick is a small town in the Shetlands, way up to the North of mainland U.K. and
somewhere I’ve wanted to go ever since I got back from Orkney–but then I spent my
honeymoon in the far North of Iceland, so perhaps I just don’t like being around lots
of people… �

Anyway, this one might be a tiny bit easier conceptually than the other problems,
except that I’ve deliberately used a slightly different way of showing the output that
might be confusing:

Print the location of Lerwick:

city = "Lerwick"
print(f"The town of {city} can be found at " +

f"{abs(myData['Longitude'][myData['Name'].index(city)])}ºW, {myData['Latitude'][myData['Name'].index(city)]}ºN")

The town of Lerwick can be found at 1.145ºW, 60.155ºN

The first thing to do is to pull apart the print statement: you can see that this is ac-
tually just two ‘f-strings’ joined by a +–having that at the end of the line tells Python
that it should carry on to the next line. That’s a handy way to make your code a little
easier to read. If you’re creating a list and it’s getting a little long, then you can also
continue a line using a , as well!

1. The first f-string
The first string will help you to make sense of the second: f-strings allow you to
‘interpolate’ a variable into a string directly rather than having to have lots of str(x)
+ " some text " + str(y). You can write f"{x} some text {y}" and Python will
automatically convert the variables x and y to strings and replace {x} with the value
of x and {y} with the value of y.

So here f"The town of {city} can be found at " becomes f"The town of Lerwick
can be found at " because {city} is replaced by the value of the variable city.
This makes for code that is easier for humans to read and so I’d consider that a good
thing.

2. The second f-string
This one is hard because there’s just a lot of code there. But, again, if we start with
what we recognise that it gets just a little bit more manageable… Also, it stands to
reason that the only difference between the two outputs is that one asks for the
‘Longitude’ and the other for the ‘Latitude’. So if you can make sense of one you
have automatically made sense of the other and don’t need to work it all out.

Let’s start with a part that you might recognise:

myData['Name'].index(city)

5

16

https://www.shetland.org/
https://www.orkney.com/
https://www.westfjords.is/

You’ve got this. This is just asking Python to work out the index of Lerwick (because
city = 'Lerwick'). So it’s a number. 5 in this case. And we can then think, ’OK so
what does this return:

myData['Longitude'][5]

-1.145

And the answer is -1.145. That’s the Longitude of Lerwick! There’s just one last thing:
notice that we’re talking about degrees West here. So the answer isn’t a negative
(because negative West degrees would be East!), it’s the absolute value. And that is
the final piece of the puzzle: abs(...) gives us the absolute value of a number!

help(abs)

Help on built-in function abs in module builtins:

abs(x, /)
Return the absolute value of the argument.

2.1.6 The Average City Size

Here we’re going to ‘cheat’ a little bit: rather than writing our own function, we’re
going to import a package and use someone else’s function. The numpy package
contains a lot of useful functions that we can call on (if you don’t believe me, add
“dir(np)” on a new line after the import statement), and one of them calculates the
average of a list or array of data.

print(f"The mean population is {np.mean(myData['Population'])}")

The mean population is 2435442.5

This is where our new approach really comes into its own: because all of the popu-
lation data is in one place (a.k.a. a series or column), we can just throw the whole
list into the np.mean function rather than having to use all of those convoluted loops
and counters. Simples, right?

No, not simple at all, but we’ve come up with a way to make it simple.

2.1.7 Recap!

So the really clever bit in all of this isn’t switching from a list-of-lists to a dictionary-
of-lists, it’s recognising that the dictionary-of-lists is a better way to work with the
data that we’re trying to analyse and that that there are useful functions that we
can exploit to do the heavy lifting for us. Simply by changing the way that we stored
the data in a ‘data structure’ (i.e. complex arrangement of lists, dictionaries, and
variables) wewere able to do awaywith lots of for loops and counters and conditions,
and reducemany difficult operations to something that could be done on one line!

17

2.2 Brain Teaser

Difficulty: �.

Why not have a stab at writing the code to print out the 4th most populous city?
This can still be done on one line, though you might want to start by breaking the
problem down:

1. How do I find the 4th largest value in a list?
2. How do I find the index of the 4th largest value in a list?
3. How do I use that to look up the name associated with that index?

You’ve already done #2 and #3 above so you’ve solved that problem. If you can solve
#1 then the rest should fall into place.

Tip

You don’t want to use <list>.sort() because that will sort your data in place
and break the link between the indexes across the ‘columns’; you want to re-
search the function sorted(<list>) where <list> is the variable that holds
your data and sorted(...) just returns whatever you pass it in a sorted order
without changing the original list. You’ll see why this matters if you get the
answer… otherwise, wait a few days for the answers to post.

Question

Print out the name of the 4th most populous city-region
city = ??

print("The fourth most populous city is: " + str(city))

The answer is Edinburgh.

2.3 Bringing it all together…

Conceptually, this is one of the hardest practicals in the entire term because it joins
up so many of the seemingly simple ideas that you covered in Code Camp into a very
complex ‘stew’ – all our basic ingredients (lists, dictionaries, etc.) have simmered
for a bit, been stirred up together, and become something entirely new and more
complex.

So if this practical doesn’t make sense to you on the first runthrough, I’d suggest
going back through the second half of the practical again in a couple of days’ time
– that will give your brain a little time to wrap itself around the basics before you
throw the hard stuff at it again. Don’t panic if it doesn’t all make sense on the sec-
ond runthrough either – this is like a language, you need to practice! With luck, the
second time you went through this code a little bitmoremade sense. If you need to
do it a third time you’ll find that even more makes sense… and so on.

18

	Tackling Programming Problems
	Why `Obvious' is Not Always `Right'

