
Practical 7: Spatial Data
Getting to grips with Geo-Data using Geopandas

Table of contents

1 Preamble 1

2 Reading Geo-Data 2

3 ‘Writing’ Geo-Data 5

4 Checking the Data 9

5 Simple Mapping 10

6 Simple Web Maps 24

7 Bringing it All Together 25
Last week we did some initial processing on the Inside Airbnb listings data, focussing
on its numeric properties. This week we are going to focus on the spatial properties
of the data set.

Tip

It makes life a lot easier if you gather all of the library import commands and
configuration information (here having to do with matplotlib) in the first exec-
tuable code block in a notebook or script. That way it’s easy for you for others
to see what what it is necessary to have installed before getting started!.

1 Preamble

import os
import numpy as np
import pandas as pd
import geopandas as gpd
import matplotlib.cm as cm
import matplotlib.pyplot as plt

import matplotlib
import matplotlib.font_manager

1

For debugging purposes (fonts can be hard)
print(matplotlib.get_cachedir())

We change fonts the hard way in this notebook...
but you can also do this to change the default
font everywhere in one go:
matplotlib.rcParams['font.family'] = "Liberation Sans Narrow"
fontname = "Liberation Sans Narrow"

matplotlib.font_manager.FontManager().findfont(fontname, fontext='ttf', rebuild_if_missing=True)

/Users/jreades/.matplotlib

'/Users/jreades/Library/Fonts/LiberationSansNarrow-Regular.ttf'

2 Reading Geo-Data

� Connections

We’re building on the work done in Practical 5 and Practical 4 (with a particular
nod to the lecture on Data) to create some useful functions that we can call on
at-need to improve the ease of doing data analysis.

I find GeoPackages andGeoParquet to be by far the easiest way to distribute geo-data
now: they are a single file (in a database-like format that supports multiple types
of data), include the projection information by default, and in some cases QGIS can
even embed information about rendering style!

We’re going to do something similar to the get_url in order to download the file
to our hard drive and save it there. The improvement is that we’ll check to see if
the file already exists and, if it does, return that so that you can don’t have to keep
downloading it week after week.

You’ll need to add the documentation yourself and I’ve left a few ?? to challenge
you.

2.1 Caching Remote Data

Wedon’t want to continually download data over the Internet: 1) because it’s not nice
to whoever is hosting the data; and 2) because it requires you be online in order to
run your code. So if we can ‘cache’ the data locally so that it’s only downloaded once
this makes life much, much easier.

I’ve used the Numpy-style comments here, but the Google-style also look good
in this context and all styles of answer are acceptable so long as they work. See
overview of commenting styles on DataCamp.

2

Practical-06-Numeric_Data.qmd
Practical-05-Objects.qmd
https://jreades.github.io/fsds/sessions/week5.html#lectures
https://www.datacamp.com/community/tutorials/docstrings-python

Tip

Use this as an opportunity to improve your ability to read code and to learn
through documentation.

Difficulty level: Moderate

Question

import os
from requests import get
from urllib.parse import urlparse

def cache_data(src:str, dest:str) -> str:
"""

??

"""
url = urlparse(src) # We assume that this is some kind of valid URL
fn = os.path.split(url.path)[??] # Extract the filename
dfn = os.path.join(dest,fn) # Destination filename

if not os.path.isfile(dfn) or os.path.getsize(dfn) < 250:

print(f"{dfn} not found, downloading!")

path = os.path.split(dest)

if len(path) >= 1 and path[0] != '':
os.makedirs(os.path.join(*path), exist_ok=True)

with open(dfn, "wb") as file:
response = get(src)
file.write(??.content)

print("\tDone downloading...")

else:
print(f"Found {dfn} locally!")

return dfn

help(cache_data) # <- This should show the docstring you've written

3

2.2 Downloading the Data

Difficulty level: Low, if your function works!

2.2.1 Geopackages

Use the function above to download and cache the GeoPackage files found on GitHub
for Boroughs, Water, and Greenspace, then pass the output of these to GeoPandas.
If you have been having trouble downloading files from GitHub, then use the under-
standing of the function developed above to download the file manually and place
it where this function expects to find it!

Question

ddir = os.path.join('data','geo') # destination directory
spath = 'https://github.com/jreades/i2p/blob/master/data/src/' # source path

boros = gpd.read_file(??(spath+'Boroughs.gpkg?raw=true', ddir))
water = gpd.read_file(??(spath+'Water.gpkg?raw=true', ddir))
green = gpd.read_file(??(spath+'Greenspace.gpkg?raw=true', ddir))

print('Done.')

2.2.2 Parquet

Let’s re-use our cache_data function to download and save the full Inside Airbnb
data set. Again, if you have trouble with downloading via code, use your under-
standing of the function to work out where to save your own copy of this file so that
the function works as expected.

Difficulty level: Low

ymd = '20240614'
city = 'London'
host = 'https://orca.casa.ucl.ac.uk'
url = f'{host}/~jreades/data/{ymd}-{city}-listings.parquet'

Question

your code here
df = pd.read_parquet(??(??, os.path.join('data','raw')))
print(f"Data frame is {df.shape[0]:,} x {df.shape[1]}")

4

https://github.com/jreades/fsds/tree/master/data/src

You should see that the file was ‘not found’ so ‘downloading’ happened and then the
size of the data frame was printed out.

3 ‘Writing’ Geo-Data

Of course, you will also often encounter geo-data that is not yet ‘geographically en-
abled’; the two most frequent contexts for this are:

1. The data represents points and is provided with latitude and longitude (or sim-
ilar) as separate columns in a non-geographic data set.

2. The data represents polygons but is provided separately from the polygons
themselves and so cannot be shown on a map without being ‘joined’ to the
geography first.

We’ll tackle each of these eventually, but for now we’re going to focus on the first
option.

3.1 Creating a GeoDataFrame

Difficulty Level: Low

Right, we’re finally there! We need to convert our coordinates into some kind of geo-
data. GeoPandas offers two ways to do this: the original way using zip and a new
utility method called points_from_xy. Here’s the old way:

from shapely.geometry import Point
gdf = gpd.GeoDataFrame(df,

geometry=[Point(x,y) for x, y in zip(df.Longitude,df.Latitude)])

Note, however, that this did not automatically set a projection, unlike the new ap-
proach with the ‘helper function’:

gdf = gpd.GeoDataFrame(df,
geometry=gpd.points_from_xy(df.longitude, df.latitude, crs='epsg:4326'))

print(type(gdf))
print(type(gdf.geometry))

<class 'geopandas.geodataframe.GeoDataFrame'>
<class 'geopandas.geoseries.GeoSeries'>

5

3.2 Saving Geo-Data Locally

3.2.1 Think Storage Formats

We want to save the InsideAirbnb GeoDataFrame to the ‘geo’ directory, but first let’s
see what file formats are supported.

Format Advantages Disadvantages

Shapefile Wide support Easy to break via loss of
individual file element and
not very efficient format

GeoJSON Human-readable Highly inefficient storage
format

GeoPackage Lightweight spatial database
with benefits of indexing

Lightweight spatial database
with limits on data types
supported

Parquet Highly compressed columnar
database

Limited GIS support (except
QGIS)

GeoPackages are really well-supported by QGIS: you can even embed multiple lay-
ers with different style information so that your final analysis is easy to distribute;
however, they also carry quite a bit of overhead that makes them inefficient for dis-
tributing smaller data sets, while also not supporting the full spectrum of Pythonic
data structures such as categorical data or lists.

GeoParquet is an extension of the Parquet format. For working with large data sets
this has revolutionised my workflow: getting excited about a columnar database
might seem a bit… nerdy… but it’s been transformative formany data scientists. First,
because the data set is columnar you only read in the data that you need, so reading
Parquet file is blindingly fast. Second, you can stream data from a Parquet file over
the Internet, so that means you even gain these advantages reading remote files.
Third, you have full support for Python data types, including (up to a point) objects.
And, fourth, you can treat multiple Parquet files with the same layout as a single data
set or mutiple Parquet files with different layouts as tables in a single database!

3.2.2 Specifying a Driver

Since there are many formats in which to save geo-data, rather than have multiple
to_format_x methods, GeoPandas has one for local files (to_file). If you are
reading/writing a filename than ends in a valid extension (e.g. .shp, .gpkg, or
.geojson) then GeoPandas will ‘do the right thing’. Where you may run into trouble
is if you are reading/writing a URL (e.g. https://github.com/jreades/fsds/blob/
master/data/src/Boroughs.gpkg?raw=true). With a URL ending in ?raw=true there’s
no extension that GeoPandas can see so you will need to specify a driver. If in
doubt, specify the driver.

6

https://geopandas.org/en/stable/docs/user_guide/io.html
https://github.com/jreades/fsds/blob/master/data/src/Boroughs.gpkg?raw=true
https://github.com/jreades/fsds/blob/master/data/src/Boroughs.gpkg?raw=true

Clarification

In this practical we are reading geodata from GitHub and I’m saying that we
need to specify the driver. So why didn’t we need to do with the cache_data
function earlier as well? Well, this was a side-benefit of using the standard URL
library: it automatically stripped off the query string (?raw=true) when I asked
it for the file name, so we saved the file locally as a GeoPackage with .gpkg
extension, which means that GeoPandas could read it without any problems.

So the following two bits of code are equivalent:

This *may* not always do what we want, but should be fine for local files
boros.to_file('test.gpkg')

This is safer if working across computers/the Internet
boros.to_file('test.gpkg', driver='GPKG')

So, starting with fn = ‘20240614-listings.gpkg’

Notice the difference:

print(f"Using '{fn}' as basis for saving data...")
try:

gdf.to_file(os.path.join('data','geo',fn), driver='GPKG')
except TypeError as e:

print("Caught type error...")
print(str(e)[:1000] + " ...")

Using '20240614-listings.gpkg' as basis for saving data...
Caught type error...
Cannot interpret 'CategoricalDtype(categories=['Barn', 'Boat', 'Camper/RV', 'Campsite', 'Casa particular',

'Castle', 'Dome', 'Earthen home', 'Entire bungalow',
'Entire cabin', 'Entire chalet', 'Entire condo',

'Entire cottage', 'Entire guest suite', 'Entire guesthouse',
'Entire home', 'Entire home/apt', 'Entire loft',
'Entire place', 'Entire rental unit',
'Entire serviced apartment', 'Entire townhouse',

'Entire vacation home', 'Entire villa', 'Farm stay', 'Floor',
'Houseboat', 'Hut', 'Island', 'Minsu', 'Private room',

'Private room in bed and breakfast', 'Private room in boat',
'Private room in bungalow', 'Private room in cabin',
'Private room in camper/rv',

'Private room in casa particular', 'Private room in chalet',
'Private room in condo', 'Private room ...

If you try to save as a GeoPackage file then the code above typically throws a
TypeError because of the presence of Categorical data.

But the below, in which we specify as a ‘geoparquet’ because of the coordinate data,
does not:

7

fn = fn.replace('.gpkg','.geoparquet')
gdf.to_parquet(os.path.join('data','geo',fn))
print("Saved.")

Saved.

3.3 Spatial Indexing

It’s also worth comparing the output of a point with the output of a polygon or multi-
polygon because you may well come across data in formats (e.g. WKT) resembling
both of these in real data sets and they can be read as well. Notice too that we can
use loc and iloc accessor methods to pull individual points and polygons out of a
GeoDataFrame!

print(gdf.geometry.iloc[1]) # Print out the object's contents
gdf.geometry.iloc[1] # The object knows how to print itself as a point

POINT (-0.21707 51.49993)

Object to string then print out first 399 characters
print(str(boros.geometry.iloc[1])[:399] + "...")
So this is a multi-polygon boundary
boros.geometry.iloc[1]

MULTIPOLYGON (((535009.2 159504.7, 535005.5 159502, 535002.9 159500.1, 535000.1 159503.2, 535000 159503.2, 534747.8 159517.8, 534588 159522.1, 534512.3 159780.5, 534474.8 159760.8, 534398.8 159726.7, 534391.9 159723.3, 534378.9 159712.4, 534345.1 159702.8, 534314.3 159691.8, 534292.7 159683.9, 534253.1 159666.6, 534229.4 159657.9, 534207.5 159654.6, 534160.5 159651.5, 534159.7 159637.1, 534109.5 ...

8

So each element of this Series has text indicating the type of shape the geometry
applies to (e.g. POLYGON) followed by a bunch of numbers. These numbers are trun-
cated here just to make things a little more legible.

4 Checking the Data

4.0.1 Checking Numeric Data

Before we mindlessly convert the parquet data to mappable geo-data it might make
sense to sanity-check it. GeoPandas has a total_bounds method that gives us the
bounding box for a GeoSeries, but how would we do that in Pandas?

Tip

Think about what the ‘total bounds’ (or ‘envelope’) of a point data set is. You
have already seen the pandas functions you’ll need to find these…

Difficulty level: Moderate

Question

print(f"The bottom-left corner is {??}, {??}")
print(f"The top-right corner is {??}, {??}")

Your answer should produce the following:

The bottom-left corner is -0.5, 51.3

The top-right corner is 0.3, 51.7

4.0.2 Checking via a Plot

Difficulty level: Low

We’ll see how you control figure-making more effectively later, but for now let’s just
see what they look like using GeoPanda’s plotting functionality. If you don’t see what
you expected then the problem could be quite basic/fundamental.

Question

for ??:
??.plot()

9

4.0.3 Checking the Projection

Difficulty level: Low

Check the projection of each GeoDataFrame using a for loop and the crs attribute.

Question

for g in [??]:
print(g.??)

You should see that all three are in the EPSG:27700 CRS which is a common one for
analysis using GB data.

4.0.4 Reprojecting the Data

Difficulty Level: Low

Let’s start by taking our InsideAirbnb data in its original projection…

print(gdf.geometry.crs)
print(gdf.total_bounds)

epsg:4326
[-0.4978 51.295937 0.29573069 51.6816423]

… and reprojecting this into the OSGB1936/BNG CRS:

Question

gdf = gdf.??(??) # There is no 'in_place=True' option here.
print(gdf.geometry.crs)
print(gdf.total_bounds)

Notice the change in total bounds from lat/long to Northing/Easting.

5 Simple Mapping

The files we’ve just downloaded all contain polygons, and the adjustments for points
are different, but it’s worth seeing how you can tweak these before we start combin-
ing them. Behind the scenes, GeoPandas is using matplotlib to render the map, so
let’s play with the colours to get the start of something map-like.

10

https://epsg.io/27700

You will want to look both at how to make maps in GeoPandas and at the different
ways to specify colours in Matplotlib. For the greenspace map you are looking for
information about tuples… which can have three or four elements.

5.1 Work Out the Colour Scheme

Difficulty level: Moderate

Caution

R and Python take very different approaches to plotting. Do not think of
Python’s output as being ‘maps’ in the GIS sense, they are composed of ‘patches’
of color on abstract ‘axes’ that can use any arbitrary coordinate space. So
colours are ‘really’ triplet (or quadruplet if you have alpha-blending trans-
parency) values in the range 0.0-1.0. Annotations are then added in similarly
abstract fashion.

I’d suggest the following colour scheme as a way to test out different ways of specify-
ing colour (though anything you like is fine so long as you manipulate the colours):

• The boroughs can have red edges and white fill with a thick edge.
• The water should have no edges and XKCD Lightblue fill.
• The greenspace should have edges and faces specified using different ‘alpha
blending’ (i.e. transparency) levels.

5.1.1 Boroughs

By way of a hint, matplotlib uses edgecolor and facecolor for controlling ‘patches’
(which is what polygons are considered), but the thicker-than-default line-width is
specified differently (you’ll need to look this up). So the intention is:

1. Thick red borough borders, and
2. White fill colour.

Just to drive home how different this is from R, you can find the answer to question
1 on the page for bar plots.

Question

boros.plot(??)

Your plot should look similar to this:

11

https://geopandas.org/mapping.html
https://matplotlib.org/3.1.1/tutorials/colors/colors.html#specifying-colors
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.bar.html

510000 520000 530000 540000 550000 560000

160000

170000

180000

190000

200000

5.1.2 Water

The process is the same as above, but I’d like you to work out how to specify: 1. No
color for an edge, and 2. An XKCD color for the face.

Question

water.plot(??)

Your plot should look similar to this:

12

500000 520000 540000 560000

140000

160000

180000

200000

5.1.3 Greenspace

The process is also the same as above, but I’d like you to work out how to specify
colours and transparency using RGBA (red-green-blue-alpha transparency) tuples.
So we’re looking for: 1. No edge color. 2. A partially transparent green specified as a
‘tuple’ (4 numbers in parentheses in the range 0.0-1.0).

Question

green.plot(??)

Your plot should look similar to this:

13

510000 520000 530000 540000 550000

160000

170000

180000

190000

200000

5.2 Combining Layers

Warning

R and Python take very different approaches to plotting. Do not think of
Python’s output as being ‘maps’ in the GIS sense, they are composed of ‘patches’
of color on abstract ‘axes’ that can use any arbitrary coordinate space. So
colours are ‘really’ numerical triplets (or quadruplets if you have transparency
as well) in the range 0.0-1.0. Annotations are then added in similarly abstract
fashion.

Now that we’ve got our layers looking roughly howwewant them, it’s time to combine
them. This is also reliant on matplotlib and basically involves plotting items to
shared axes which is done by passing in ax=<axis object> to each plot(...). By
convention, if you only have a single figure (e.g. a single map) then you create an
axis object and name it ax so you will see a lot of ax=ax code in graphing libraries,
but =ax is just saying ‘assign to the axis object that I created’.

Since the axes are how you control what is shown, see if you can find out by Googling
how to set the x- and y-limits on the map so that it shows only London and trims
out the much larger area of water that is outside of the Greater London Authority. As
a rough guideline, this has the Easting range 501,000 to 563,000, and the Northing
range 155,000 to 202,000.
You can set these limits before or after you start adding layers to the ‘map’, but it’s
probably easier conceptually to add them after with the idea of ‘zooming in’ on the

14

features of interest. It’s also easier to debug since you can start by seeing if you can
plot the elements at all, and then add the limits to zoom.

So the steps are:

1. Write the code to plot every image on the same set of axes (I’ve given you
something to get started).

2. Google how to set the limits of the map and then use the ranges I’ve offered
above.

3. Work out how to change the width of the edges for the boroughs layer.
4. Save it somewhere local so that you could, say, load it into a Markdown file!

Tip

This is a first pass at a map, over the next few weeks we’ll see how to add things
like axis labels and titles to make it more ‘map-like’. We don’t have quite the
built-in functionality of ggplot alas, but Python is advancing very quickly in this
area. There is even an implementation of ggplot in Python, but it’s functionality
is more limited. In fact, there’s more than one…

Difficulty level: Hard

Question

Creates a new figure with specified number of
subplots (we'll see more of this later) and
and the specified size (in inches by default).
fig, ax = plt.subplots(1,1, figsize=(8,6))

Plot all three GeoPackages to the same axes
water.plot(??, ax=ax)
green.??
boros.??

Set the x and y limits

Save the image (dpi is 'dots per inch')
os.??('img', exist_ok=True)
plt.savefig(os.path.join('img','My_First_Map.png'), dpi=150)

You may wish for a different look, but here’s one version of the output:

15

https://github.com/yhat/ggpy
https://github.com/has2k1/plotnine

510000 520000 530000 540000 550000 560000

160000

170000

180000

190000

200000

5.3 Choropleth Plots

Difficulty Level: Low

Now that we’ve converted the InsideAirbnb data to a GeoDataFrame, we can plot it,
reproject it, etc.

See if you can work out how to plot the points coloured by their price using the
appropriate BNG projection.

Question

gdf.to_crs(??).plot(column=??, cmap=??, alpha=0.25, markersize=1, figsize=(8,6));

Using the Viridis colourmap I get the following:

16

510000 520000 530000 540000 550000 560000

160000

170000

180000

190000

200000

5.3.1 Work out the Data Range

Difficulty level: Low

As we saw above with the point-plot, in its original form the pricing data will not
reveal much of interest because of the range of the data. However, as you will have
seen in QM already (and as we explore in greater detail in Weeks 7/8), using trans-
formations we can manipulate the data to increase its tractability for analysis.

Let’s start by getting a feel for the full data set in terms of the range of prices that it
contains:

Question

print(f"The range of price is ${??:,.2f} to ${??:,.2f}")
print(f"The mean and median of the price are ${??:,.2f} and ${??:,.2f}")

Notice the neat little comma-separated thousands in there? That’s fairly easy to do
in English, but to use a thousands separator common to another language you would
need to do something a little more tricky.

17

https://stackoverflow.com/questions/13082620/how-can-i-print-a-float-with-thousands-separators

5.3.2 Inheritance!

We already know that GeoPandas inherits functionality from Pandas, but let’s for-
malise this…

First, let’s check what class of object gdf is using the isinstance function:

Is gdf a GeoDataFrame object?
if isinstance(gdf, gpd.GeoDataFrame):

print("\tI'm a geopandas data frame!")

Is gdf *also* a DataFrame object?
if isinstance(gdf, pd.DataFrame):

print("\tI'm a pandas data frame!")

I'm a geopandas data frame!
I'm a pandas data frame!

5.3.3 Benefiting from Inheritance

That result means that we can also investigate the data using, for instance, a pandas
histogram:

Question

Oooooh, let's use a *pandas* method here
gdf.price.plot.??(bins=??, figsize=(8,3));

Notice how we’ve used our GeoDataFrame as if it’s a plain old DataFrame here?
That’s the miracle of Object-Oriented Design: we can do anything we would with
a regular Pandas df as we do with a GeoPandas gdf because GeoPandas inherits all
the methods of its parent super-class.

We can see that there’s very little data above (at a guess) about $2,000, but at this
scale it’s hard to tell. We’ve already seen that you can use axes limits to adjust the
display of a map, but the same technique applies to plain old plots because they’re
fundamentally the same thing.

Try adjusting the axis so that the x-range is 0..2500:

ax = gdf.price.plot.??(bins=??, figsize=(8,3));
ax.??

You can do the same thing with a boxplot:

18

https://www.w3schools.com/python/ref_func_isinstance.asp

Question

ax = gdf.price.plot.??(vert=False, figsize=(8,3))
ax.??

More complex formatting is also possible if you really know your pandas and your
matplotlib:

gdf.price.plot(kind='box', vert=False,
color=dict(boxes='r', whiskers='r', medians='r', caps='r'),
boxprops=dict(linestyle='-', linewidth=1.5),
flierprops=dict(linestyle='-', linewidth=1.5),
medianprops=dict(linestyle='-', linewidth=1.5),
whiskerprops=dict(linestyle='-', linewidth=1.5),
capprops=dict(linestyle='-', linewidth=1.5),
showfliers=False, grid=False, rot=0);

0 50 100 150 200 250 300 350 400

price

5.4 Truncate and Transform

Difficulty level: Hard

5.4.1 Working it Out

Anyway, drawing on everything we’ve seen over the past couple of weeks (and in this
practical) I’d like you to:

1. Try to take the natural-log of the price (hint: use numpy) and assign to a new
Series called lnprice.

2. Work out what the error means.
3. Work out how to fix the error and then repeate step 1.

19

https://stackoverflow.com/a/54023612/4041902

4. Work out how many rows were affected.
5. Report on the new min/max values.
6. Work out if other outliers need to be removed (use code from above).
7. Remove outliers and then continue with your work…

Use this as a 'scratch space' to work out what's needed below...

Question

print(f"gdf has {gdf.shape[0]:,.0f} rows.")

---------- Do the processing -------------
You may need more than one of these 'drops'
to get the data the way you want...
gdf.drop(gdf[??].index, axis=0, inplace=True)
gdf['lnprice'] = np.log(gdf.price)

---------- Check effects -----------
print(f"gdf now has {gdf.shape[0]:,.0f} rows.")
print(f"The range of price is {gdf.price.min():,.2f} to {gdf.price.max():,.2f}")
print(f"The range of ln(price) is {gdf.lnprice.min():,.4f} to {gdf.lnprice.max():,.4f}")

gdf.price.plot(kind='box', vert=False,
color=dict(boxes='r', whiskers='r', medians='r', caps='r'),
boxprops=dict(linestyle='-', linewidth=1.5),
flierprops=dict(linestyle='-', linewidth=1.5),
medianprops=dict(linestyle='-', linewidth=1.5),
whiskerprops=dict(linestyle='-', linewidth=1.5),
capprops=dict(linestyle='-', linewidth=1.5),
showfliers=False, grid=False, rot=0);

plt.title("Price (Outliers not shown)")
plt.show()

gdf.lnprice.plot(kind='box', vert=False,
color=dict(boxes='r', whiskers='r', medians='r', caps='r'),
boxprops=dict(linestyle='-', linewidth=1.5),
flierprops=dict(linestyle='-', linewidth=1.5),
medianprops=dict(linestyle='-', linewidth=1.5),
whiskerprops=dict(linestyle='-', linewidth=1.5),
capprops=dict(linestyle='-', linewidth=1.5),
showfliers=False, grid=False, rot=0);

plt.title("Ln(Price) (Outliers not shown)")
plt.show()

5.5 Plot Options

Now plot the ln(price) as a chloropleth using:

1. A figure size of 9 x 6

20

2. A marker size of 0.25
3. The Viridis colourmap
4. A legend
5. A legend label of ‘Natural Log of Price per Night ($)’

I’d suggest referring to the documentation.

Question

ax = gdf.plot(figsize=??, marker='*', markersize=0.25,
column=??, cmap=??,
legend=??, legend_kwds=??);

ax.set_title("Plot of Natural Log of Nightly Price for Airbnb Listings (Outliers Removed)");

You should get something like:

Figure 1: Natural Log of Price per Night ($) with Outliers REmoved

510000 520000 530000 540000 550000 560000

160000

170000

180000

190000

200000

Plot of Natural Log of Nightly Price for Airbnb Listings (Outliers Removed)

2

3

4

5

6

Na
tu

ra
l L

og
 o

f P
ric

e
pe

r N
ig

ht
 ($

)

5.6 Zooming In/Out

Difficulty Level: Low

That’s a little hard to see, let’s try zooming in on Central London! Very roughly, let’s
call that an Easting range of 525,000 to 535,000 and a Northing range of 178,000 to
185,000.

21

https://geopandas.org/mapping.html

Plotting

We show one way to do this below (f,ax = plt.subplots(...)) because
it gives you greater control, but gdf.plot() can return an axis object (ax =
gdf.plot(...)) that gives you the same kind of access… but with a bit more
‘faff’.

Question

Note this new f,ax syntax and that we then
pass ax=ax to gdf.plot -- this has to do with
where and how things are plotted.
f,ax = plt.subplots(1,1,figsize=(8,6))
gdf.plot(ax=ax, marker='*', markersize=0.25,

column='lnprice', cmap='viridis',
legend=True, legend_kwds={'label':'Natural Log of Price per Night ($)'});

ax.set_title("Ln(Price/Night) for Airbnb Listings (Central London Detail)")
ax.??
ax.??
f

Your result should look something like this:

Figure 2: Natural Log of Price per Night ($)

526000 528000 530000 532000 534000
178000

179000

180000

181000

182000

183000

184000

185000
Ln(Price/Night) for Airbnb Listings (Central London Detail)

2

3

4

5

6

Na
tu

ra
l L

og
 o

f P
ric

e
pe

r N
ig

ht
 ($

)

That’s a little better, but ideally we’d do more thinking about outliers…

22

5.7 Changing the Classification Scheme

Difficulty Level: Moderate (mainly computation time)

Let’s give this one last try using the quantiles classification scheme for Central Lon-
don!

Question

f,ax = plt.subplots(1,1,figsize=(8,6))
ax = gdf.plot(marker='*', markersize=0.25,

column='lnprice', cmap='viridis', ??, k=5,
legend=True, ax=ax);
Note that the legend *label* had to go --
there are other ways to add it.

ax.set_xlim([525000,535000])
ax.set_ylim([178000,185000])

Your answer should look like:

Figure 3: Natural Log of Price per Night ($) in Central London

526000 528000 530000 532000 534000
178000

179000

180000

181000

182000

183000

184000

185000
1.95, 4.01
4.01, 4.50
4.50, 4.92
4.92, 5.35
5.35, 6.91

23

6 Simple Web Maps

Difficulty Level: Hard

This is more for the sake of demonstrating Python’s features than because it’s part
of my workflow, but what the heck, let’s do it! We will create and embed a zoomable
web map in the notebook; to do that we need to:

1. Calculate the bounds of the map using the min/max x and y coordinates above.
2. Calculate the centroid of the map from the bounds.
3. Set an appropriate zoom level.

If your work is going well, perhaps you may also want to experiment with different
basemaps.

Tip

You can’t use round here because it it could round up or down depending on
what’s closest and, consequently, cut off data on your map. So you’ll have to
look for two other functions that do this predictably (e.g. always rounding down,
even if the value is 4.999999). However, those functions don’t handle decimals
like round does, so you need to think about how you could turn a number like
4.99 into a number that those functions can work with and then turn it back
into the decimal…

Question

from math import floor, ceil

Calculate min and max to *two* decimal places
xmin = ??
xmax = ??
ymin = ??
ymax = ??

Print them to *3* decimal places to check they end in 0
print(f"{xmin:.3f}, {xmax:.3f}, {ymin:.3f}, {ymax:.3f}")

Calculate the centre of the map
yctr = ??
xctr = ??

Print this two ways to see an intriguing issue
print(f"{xctr:.5f}, {yctr:.5f}")
print(xctr, yctr)

You should end up with something like:

-0.530, 0.310, 51.270, 51.710

24

https://ipyleaflet.readthedocs.io/en/latest/api_reference/basemaps.html
https://ipyleaflet.readthedocs.io/en/latest/api_reference/basemaps.html

-0.11000, 51.49000
-0.10999999999999999 51.49

You’ll see why this happens in the answer.

If you’ve managed the calculations above, then this code should simply run!

from ipyleaflet import Map, basemaps, basemap_to_tiles, Rectangle, projections

Note the basemap can be easily changed
watercolor = basemap_to_tiles(basemaps.OpenStreetMap.HOT)

m = Map(layers=(watercolor,), center=(yctr, xctr), zoom=8)

rectangle = Rectangle(bounds=((ymin, xmin), (ymax, xmax)),
crs=projections.EPSG4326

)

m.add_layer(rectangle)

m

Map(center=[51.489999999999995, -0.09999999999999998], controls=(ZoomControl(options=['position', 'zoom_in_tex…

Your map should look like this:

Map(center=[51.489999999999995, -0.09999999999999998], controls=(ZoomControl(options=['position', 'zoom_in_tex…

7 Bringing it All Together

Difficulty Level: �

To give a bit of a show of how we can put it all together try to get this working

Question

import pysal as p
import mapclassify as mc
import palettable.matplotlib as palmpl
from legendgram import legendgram

We create a temporary data frame here because we want
the 'bins' to be created using only the data on the
map. Otherwise, we'd have a distribution on the map
that differed from the one in the legendgram and the
one used to calculate the breaks in the first place!

25

tgdf = gdf[(gdf.geometry.x > 525000) & (gdf.geometry.x < 540000) & (gdf.geometry.y > 176000) & (gdf.geometry.y < 186000)].copy()

Here we use Mapclassify to calculate quantiles
(k=5) using the original price. You could use
any Mapclassify scheme at this point, though
note that for Fisher Jenks you might want to use
the 'Sampled' version to speed things up a bit.
q = mc.??(tgdf.price.values, ??)

We then write these binned values *back* on to the data
frame so that we can use them with the GDF plot function.
tgdf['bins'] = q.??

Set up the figure with its 'basemap'
f,ax = plt.subplots(figsize=(8,6))
green.plot(edgecolor=(0.7, 0.7, 0.14, 0.25), facecolor=(0.7, 0.7, 0.14, 0.25), zorder=1, ax=ax)
water.plot(edgecolor="none", facecolor='xkcd:lightblue', zorder=2, ax=ax)
boros.plot(edgecolor=(0.8, 0, 0, 0.5), facecolor='none', linewidth=2.5, zorder=3, ax=ax)

Restrict the x and y axis to the data
Notice it's hard-coded here *and* above
this could be done *better* using a
custom bounding box so that we could
update both the tgdf and the display
area at the same time.
ax.set_xlim([525000,540000])
ax.set_ylim([176000,186000])

ax.axis(??) # Don't plot the axes

Plot the bins using a categorical legend instead
of the price using a continuous legend.
tgdf.plot(column='bins', categorical=True,

cmap='viridis', legend=True, marker='.', markersize=1.5, zorder=4, ax=ax)

Set the title using a specified font, weight, and size
ax.set_title('London Airbnb Listings Price Per Night',

fontdict={'fontsize':'20', 'fontweight':'3', 'family':fontname}) #provide a title

This is where geopandas gets in the way -- the
categorical legend doesn't work for us so we need
to actually create the legend 'by hand' using this
code... which first has to *find* the layer containing
the data! Each layer is a 'patch collection', so we
loop through the collections looking for the one whose
z-order is 4 (which we set above to the data layer).
#
I relied on this: https://stackoverflow.com/a/71419387/4041902
to work out how to do this!
for c in ax.collections:

26

Find the layer with the data
if c.get_zorder()==4:

Now we can create a legend... but we need to
first retrieve the colours from the layer. These
are returned as 'handles' and then we need to
associate these with the labels taken from the
Mapclassify object... Once we set that up, along
with fonts and such, we can add it as an 'artist'
to the figure.
handles, _ = c.legend_elements(prop="colors")
legend1 = ax.legend(handles, q.get_legend_classes(fmt='{:.2f}'),

loc="upper right", title="Price per Night",
prop={'size':'10', 'weight':'1', 'family':fontname})

ax.add_artist(legend1)

And don't forget to add a source!
a = ax.text(tgdf.geometry.x.max(), tgdf.geometry.y.min(), 'Source: InsideAirbnb (2022)',

horizontalalignment='right', verticalalignment='bottom',
fontsize=14, fontweight=4, color='#333333', family=fontname)

And this is a nice feature: show the distribution!
ax2 = legendgram(f, ax,

tgdf.??, q.??, bins=round(gdf.price.max()/25),
pal=palmpl.Viridis_5,
legend_size=(0.3, 0.1),
loc='lower left',
clip=(0,1000),
frameon=True

)
But we have to fix the font manually here
for the legendgram too
for tk in ax2.get_xticklabels():

tk.set_fontname(fontname)

#plt.savefig('Airbnb-price-all.png', dpi=150)

You should have something like this:

I’ll be honest, I do find ggplot easier for making good-quality; this ismore customis-
able overall, but it’s also much more ‘magical’ in the sense of ‘search for matplotlib
examples that do what you want then copy+paste them and tweak’ being the main
way that most people get things working how they want.

Scalebars are awkward, and there’s now a library that can help with this on GitHub
that I’ve installed. But I’ll leave that one to you.

Tip

You can find a lot of possible solutions in this Stackoverflow thread that should
work without needing to install new libraries but I’ve not had a chance to test
them each individually. You would undoubtedly want to put this in an external
package and import it when needed rather than paste this code into every file.

27

https://github.com/ppinard/matplotlib-scalebar
https://stackoverflow.com/questions/32333870/how-can-i-show-a-km-ruler-on-a-cartopy-matplotlib-plot

Figure 4: London Airbnb Listings Price Per Night (Quantiles)

Source: InsideAirbnb (2022)

London Airbnb Listings Price Per Night
Price per Night

[8.00, 66.00]
(66.00, 105.00]
(105.00, 159.00]
(159.00, 250.00]
(250.00, 1000.00]

Price per Night
[8.00, 66.00]
(66.00, 105.00]
(105.00, 159.00]
(159.00, 250.00]
(250.00, 1000.00]

0 500 1000

But you might find it easier to test the solutions by pasting. If you’re looking for
glory (and my gratitude) then working out which of these is most generalisable
(i.e. would work with both lat/long and OSGB coordinates) would be quite the
challenge!

7.0.1 Getting More Help/Applications

A great resource for more help and more examples is Dani Arribas-Bel’s Geographic
Data Sciencemodule: he has put all of his module practicals online (as we have too),
and you might find that something that he does makes more sense to you than what
we’ve done… check it out!

7.1 Credits!

Contributors:
The following individuals have contributed to these teaching materials: Jon Reades
(j.reades@ucl.ac.uk), James Millington (james.millington@kcl.ac.uk)

License
These teaching materials are licensed under a mix of The MIT License and the Cre-
ative Commons Attribution-NonCommercial-ShareAlike 4.0 license.

28

https://github.com/darribas/gds_course
https://opensource.org/licenses/mit-license.php
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/

Acknowledgements:
Supported by the Royal Geographical Society (with the Institute of British Geogra-
phers) with a Ray Y Gildea Jr Award.

Potential Dependencies:
This notebook may depend on the following libraries: geopandas, pandas, mat-
plotlib, seaborn

29

https://www.rgs.org/HomePage.htm

	Preamble
	Reading Geo-Data
	`Writing' Geo-Data
	Checking the Data
	Simple Mapping
	Simple Web Maps
	Bringing it All Together

