
Practical 8bis: Working with Text (Part 2)
The basics of Text Mining and NLP

Table of contents

1 Preamble 2

2 Setup 2

3 Illustrative Text Cleaning 6

4 Applying Normalisation 17

5 Revenons à Nos Moutons 20

6 Word Clouds 31

7 Latent Dirchlet Allocation 34

8 Word2Vec 37

9 Processing the Full File 40
Part 2 of Practical 8 is optional and should only be attempted if Part 1 made sense
to you.

1. The first few tasks are about finding important vocabulary (think ‘keywords’
and ‘significant terms’) in documents so that you can start to think about what
is distinctive about documents and groups of documents. This is quite useful
and relatively easier to understand than what comes next!

2. The second part is about fully-fledged NLP using Latent Direclecht Allocation
(topic modelling) and Word2Vec (words embeddings for use in clustering or
similarity work).

The later parts are largely complete and ready to run; however, that doesn’t mean
you should just skip over them and think you’ve grasped what’s happening and it
will be easy to apply in your own analyses. I would not pay as much attention to LDA
topic mining since I don’t think it’s results are that good, but I’ve included it here as
it’s still commonly-used in the Digital Humanities and by Marketing folks. Word2Vec
is muchmore powerful and forms the basis of the kinds of advances seen in ChatGPT
and other LLMs.

1

� Connections

Working with text is unquestionably hard. In fact, conceptually this is probaly
the most challenging practical of the term! But data scientists are always deal-
ing with text because so much of the data that we collect (even more so thanks
to the web) is not only text-based (URLs are text!) but, increasingly, unstruc-
tured (social media posts, tags, etc.). So while getting to grips with text is a
challenge, it also uniquely positions you with respect to the skills and knowl-
edge that other graduates are offering to employers.

1 Preamble

This practical has been written using nltk, but would be relatively easy to rework
using spacy. Most programmers tend to use one or the other, and the switch wouldn’t
be hard other than having to first load the requisite language models:

import spacy

`...web_md` and `...web_lg` are also options
corp = "en_core_web_sm"

try:
nlp = spacy.load(corp)

except OSError:
spacy.cli.download(corp)
nlp = spacy.load(corp)

You can read about the models, and note that they are also available in other lan-
guages besides English.

2 Setup

Difficulty Level: Low

But this is only because this has been worked out for you. Starting from sctach
in NLP is hard so people try to avoid it as much as possible.

2.1 Required Modules

Note

Notice that the number of modules and functions that we import is steadily
increasing week-on-week, and that for text processing we tend to draw on quite
a wide range of utilies! That said, the three most commonly used are: sklearn,

2

https://spacy.io/models/en
https://spacy.io/usage/models
https://spacy.io/usage/models

nltk, and spacy.

Standard libraries we’ve seen before.

import os
import numpy as np
import pandas as pd
import geopandas as gpd
import re
import math
import matplotlib.pyplot as plt

Vectorisers we will use from the ‘big beast’ of Python machine learning: Sci-Kit
Learn.

from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.decomposition import LatentDirichletAllocation

We don't use this but I point out where you *could*
from sklearn.preprocessing import OneHotEncoder

NLP-specific libraries that wewill use for tokenisation, lemmatisation, and frequency
analysis.

import nltk
import spacy
from nltk.corpus import wordnet as wn
from nltk.stem.wordnet import WordNetLemmatizer

try:
from nltk.corpus import stopwords

except:
nltk.download('stopwords')
from nltk.corpus import stopwords

stopword_list = set(stopwords.words('english'))

from nltk.tokenize import word_tokenize, sent_tokenize
from nltk.tokenize.toktok import ToktokTokenizer

from nltk.stem.porter import PorterStemmer
from nltk.stem.snowball import SnowballStemmer

from nltk import ngrams, FreqDist

lemmatizer = WordNetLemmatizer()
tokenizer = ToktokTokenizer()

Remaining libraries that we’ll use for processing and display text data. Most of this
relates to dealing with the various ways that text data cleaning is hard because of
the myriad formats it comes in.

3

import string
import unicodedata
from bs4 import BeautifulSoup
from wordcloud import WordCloud, STOPWORDS

This next is just a small utility function that allows us to output Markdown (like this
cell) instead of plain text:

from IPython.display import display_markdown

def as_markdown(head='', body='Some body text'):
if head != '':

display_markdown(f"##### {head}\n\n>{body}\n", raw=True)
else:

display_markdown(f">{body}\n", raw=True)

as_markdown('Result!', "Here's my output...")

Result!

Here’s my output…

2.2 Loading Data

� Connections

Because I generally want each practical to stand on its own (unless I’m trying to
make a point), I’ve not moved this to a separate Python file (e.g. utils.py, but
in line with what we covered back in the lectures on Functions and Packages,
this sort of thing is a good candidate for being split out to a separate file to
simplify re-use.

Remember this function from last week? We use it to save downloading files that
we already have stored locally. But notice I’ve made some small changes… what do
these do to help the user?

import os
from requests import get
from urllib.parse import urlparse
from functools import wraps

def check_cache(f):
@wraps(f)
def wrapper(src, dst, min_size=100):

url = urlparse(src) # We assume that this is some kind of valid URL
fn = os.path.split(url.path)[-1] # Extract the filename
dsn = os.path.join(dst,fn) # Destination filename
if os.path.isfile(dsn) and os.path.getsize(dsn) > min_size:

4

https://jreades.github.io/fsds/sessions/week3.html#lectures

print(f"+ {dsn} found locally!")
return(dsn)

else:
print(f"+ {dsn} not found, downloading!")
return(f(src, dsn))

return wrapper

@check_cache
def cache_data(src:str, dst:str) -> str:

"""Downloads a remote file.

The function sits between the 'read' step of a pandas or geopandas
data frame and downloading the file from a remote location. The idea
is that it will save it locally so that you don't need to remember to
do so yourself. Subsequent re-reads of the file will return instantly
rather than downloading the entire file for a second or n-th itme.

Parameters

src : str

The remote *source* for the file, any valid URL should work.
dst : str

The *destination* location to save the downloaded file.

Returns

str

A string representing the local location of the file.
"""

Convert the path back into a list (without)
the filename -- we need to check that directories
exist first.
path = os.path.split(dst)[0]
print(f"Path: {path}")

Create any missing directories in dest(ination) path
-- os.path.join is the reverse of split (as you saw above)
but it doesn't work with lists... so I had to google how
to use the 'splat' operator! os.makedirs creates missing
directories in a path automatically.
if path != '':

os.makedirs(path, exist_ok=True)

Download and write the file
with open(dst, "wb") as file:

response = get(src)
file.write(response.content)

print(' + Done downloading...')

5

return dst

Tip

For very large non-geographic data sets, remember that you can use_cols (or
columns depending on the file type) to specify a subset of columns to load.

Load the main data set:

Load the data sets created in the previous practical
lux = gpd.read_parquet(os.path.join('data','clean','luxury.geopackage'))
aff = gpd.read_parquet(os.path.join('data','clean','affordable.geopackage'))
bluesp = gpd.read_parquet(os.path.join('data','clean','bluespace.geopackage'))

3 Illustrative Text Cleaning

Now we’re going to step through the parts of the process that we apply to clean and
transform text. We’ll do this individually before using a function to apply them all
at once.

3.1 Downloading a Web Page

Difficulty Level: Low.

There is plenty of good economic geography research being done using web pages.
Try using Google Scholar to look for work using the British Library’s copy of the In-
ternet Archive.

from urllib.request import urlopen, Request

We need this so that the Bartlett web site 'knows'
what kind of browser it is deasling with. Otherwise
you get a Permission Error (403 Forbidden) because
the site doesn't know what to do.
hdrs = {

'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.11 (KHTML, like Gecko) Chrome/23.0.1271.64 Safari/537.11',
'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8',

}
url = 'https://www.ucl.ac.uk/bartlett/casa/about-0'

Question

Notice that here we have to assemble a request and
then 'open' it so that the request is properly issued

6

to the web server. Normally, we'd just use `urlopen`,
but that doesn't give you the ability to set the headers.
request = Request(url, None, hdrs) #The assembled request
response = urlopen(request)
html = response.???.decode('utf-8') # The data you need

print(html[:1000])

Answer

Notice that here we have to assemble a request and
then 'open' it so that the request is properly issued
to the web server. Normally, we'd just use `urlopen`,
but that doesn't give you the ability to set the headers.
request = Request(url, None, hdrs) #The assembled request
response = urlopen(request)
html = response.read().decode('utf-8') # The data you need

print(html[:1000])

<!DOCTYPE html>
<!--[if IE 7]>
<html lang="en" class="lt-ie9 lt-ie8 no-js"> <![endif]-->
<!--[if IE 8]>
<html lang="en" class="lt-ie9 no-js"> <![endif]-->
<!--[if gt IE 8]><!-->
<html lang="en" class="no-js"> <!--<![endif]-->
<head>
<meta name="viewport" content="width=device-width, initial-scale=1.0"/>
<meta name="author" content="UCL"/>
<meta property="og:profile_id" content="uclofficial"/>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />

<link rel="shortcut icon" href="https://www.ucl.ac.uk/bartlett/casa/sites/all/themes/indigo/favicon.ico" type="image/vnd.microsoft.icon" />
<meta name="description" content="The Centre for Advanced Spatial Analysis (CASA) is an interdisciplinary research institute focusing on the science of cities within The Bartlett Faculty of the Built Environment at UCL." />
<link rel="canonical" href="https://www.ucl.ac.uk/bartlett/casa/about-0" />
<meta name="ucl:faculty" content="Bartlett" />
<meta name="ucl:org_unit" content="Cent

3.2 Removing HTML

Difficulty level: Moderate

Because what we’re doing will seem really strange and uses some previously
unseen libraries that you’ll have to google.

Hint: you need to need to get the text out of the each returned <p> and <div> ele-
ment! I’d suggest also commenting this up since there is a lot going on on some of
these lines of code!

7

Question

cleaned = []

soup = BeautifulSoup(html)
body = soup.find('body')

for c in body.findChildren(recursive=False):
if c.name in ['div','p'] and c.???.strip() != '':

\xa0 is a non-breaking space in Unicode (in HTML)
txt = [re.sub(r'(?:\u202f|\xa0|\u200b)',' ',x.strip()) for x in c.get_text(separator=" ").split('\n') if x.strip() != '']
cleaned += txt

cleaned

Answer

cleaned = []

soup = BeautifulSoup(html)
body = soup.find('body')

for c in body.findChildren(recursive=False):
if c.name in ['div','p'] and c.get_text().strip() != '':

\xa0 is a non-breaking space in Unicode (in HTML)
txt = [re.sub(r'(?:\u202f|\xa0|\u200b)',' ',x.strip()) for x in c.get_text(separator=" ").split('\n') if x.strip() != '']
cleaned += txt

cleaned

['UCL Home The Bartlett Centre for Advanced Spatial Analysis About',
'About',
'The Centre for Advanced Spatial Analysis (CASA) is an interdisciplinary research institute focusing on the science of cities within The Bartlett Faculty of the Built Environment at UCL.',
'The Centre for Advanced Spatial Analysis (CASA) was established in 1995 to lead the development of a science of cities drawing upon methods and ideas in modelling and data science, sensing the urban environment, visualisation and computation. Today, CASA’s research is still pushing boundaries to create better cities for everyone, both leading the intellectual agenda and working closely with government and industry partners to make real-world impact. Our teaching reflects this, making the most of our cutting-edge research, tools, new forms of data, and long-standing non-academic partnerships to train the next generation of urban scientists with the skills and ideas they’ll need to have an impact in industry, government, academia, and the third sector. The CASA community is closely connected, but strongly interdisciplinary. We bring together people from around the world with a unique variety of backgrounds –
including physicists, planners, geographers, economists, data scientists, architects, mathematicians and computer scientists –
united by our mission to tackle the biggest challenges facing cities and societies around the world. We work across multiple scales: from the hyper-local environment of the low-powered sensor all the way up to satellite remote sensing of whole countries and regions. Studying at CASA brings lifelong value, with our students poised to take on leadership and integration roles at the forefront of urban and spatial data science. By studying with us you will become part of our active and engaged alumni community, with access to job listings, networking and social activities, as well as continued contact with our outstanding teachers and researchers. Location The UCL Centre for Advanced Spatial Analysis is located at 90 Tottenham Court Road, London, W1T 4TJ.',
'View Map',
'Contact Address: UCL Centre for Advanced Spatial Analysis First Floor, 90 Tottenham Court Road London W1T 4TJ Telephone: +44 (0)20 3108 3877 Email: casa@ucl.ac.uk']

3.3 Lower Case

Difficulty Level: Low.

Question

8

lower = [c.???() for ??? in cleaned]
lower

Answer

lower = [s.lower() for s in cleaned]
lower

['ucl home the bartlett centre for advanced spatial analysis about',
'about',
'the centre for advanced spatial analysis (casa) is an interdisciplinary research institute focusing on the science of cities within the bartlett faculty of the built environment at ucl.',
'the centre for advanced spatial analysis (casa) was established in 1995 to lead the development of a science of cities drawing upon methods and ideas in modelling and data science, sensing the urban environment, visualisation and computation. today, casa’s research is still pushing boundaries to create better cities for everyone, both leading the intellectual agenda and working closely with government and industry partners to make real-world impact. our teaching reflects this, making the most of our cutting-edge research, tools, new forms of data, and long-standing non-academic partnerships to train the next generation of urban scientists with the skills and ideas they’ll need to have an impact in industry, government, academia, and the third sector. the casa community is closely connected, but strongly interdisciplinary. we bring together people from around the world with a unique variety of backgrounds –
including physicists, planners, geographers, economists, data scientists, architects, mathematicians and computer scientists –
united by our mission to tackle the biggest challenges facing cities and societies around the world. we work across multiple scales: from the hyper-local environment of the low-powered sensor all the way up to satellite remote sensing of whole countries and regions. studying at casa brings lifelong value, with our students poised to take on leadership and integration roles at the forefront of urban and spatial data science. by studying with us you will become part of our active and engaged alumni community, with access to job listings, networking and social activities, as well as continued contact with our outstanding teachers and researchers. location the ucl centre for advanced spatial analysis is located at 90 tottenham court road, london, w1t 4tj.',
'view map',
'contact address: ucl centre for advanced spatial analysis first floor, 90 tottenham court road london w1t 4tj telephone: +44 (0)20 3108 3877 email: casa@ucl.ac.uk']

3.4 Stripping ‘Punctuation’

Difficulty level: Hard

This is because you need to understand: 1) why we’re compiling the regular
expression and how to use character classes; and 2) how the NLTK tokenizer
differs in approach to the regex.

3.4.1 Regular Expression Approach

We want to clear out punctuation using a regex that takes advantage of the [...]
(character class) syntax. The really tricky part is remembering how to specify the
‘punctuation’ when some of that punctuation has ‘special’ meanings in a regular
expression context. For instance, . means ‘any character’, while [and] mean ‘char-
acter class’. So this is another escaping problem and it works the same way it did
when we were dealing with the Terminal…

Hints: some other factors…

1. You will want to match more than one piece of punctuation at a time, so I’d
suggest add a + to your pattern.

2. You will need to look into metacharacters for creating a kind of ‘any of the
characters in this class’ bag of possible matches.

Question

pattern = re.compile(r'[???]+')
print(pattern)

9

Answer

pattern = re.compile(r'[,\.!\-><=\(\)\[\]\/&\'\"’;\+\–\—]+')
print(pattern)

re.compile('[,\\.!\\-><=\\(\\)\\[\\]\\/&\\\'\\"’;\\+\\–\\—]+')

3.4.2 Tokenizer

The other way to do this, which is probably easier but produces more complex
output, is to draw on the tokenizers already provided by NLTK. For our purposes
word_tokenize is probably fine, but depending on your needs there are other
options and you can also write your own.

nltk.download('punkt')
nltk.download('wordnet')
from nltk.tokenize import word_tokenize
print(word_tokenize)

<function word_tokenize at 0x177fc6200>

[nltk_data] Downloading package punkt to /Users/jreades/nltk_data...
[nltk_data] Package punkt is already up-to-date!
[nltk_data] Downloading package wordnet to /Users/jreades/nltk_data...
[nltk_data] Package wordnet is already up-to-date!

3.4.3 Compare

Look at how these outputs differ in subtle ways:

subbed = []
tokens = []
for l in lower:

subbed.append(re.sub(pattern, ' ', l))
tokens.append(word_tokenize(l))

for s in subbed:
as_markdown("Substituted", s)

for t in tokens:
as_markdown("Tokenised", t)

Substituted

ucl home the bartlett centre for advanced spatial analysis about

10

https://www.nltk.org/api/nltk.tokenize.html

Substituted

about

Substituted

the centre for advanced spatial analysis casa is an interdisciplinary re-
search institute focusing on the science of cities within the bartlett fac-
ulty of the built environment at ucl

Substituted

the centre for advanced spatial analysis casa was established in 1995 to
lead the development of a science of cities drawing upon methods and
ideas in modelling and data science sensing the urban environment visu-
alisation and computation today casa s research is still pushing bound-
aries to create better cities for everyone both leading the intellectual
agenda and working closely with government and industry partners to
make real world impact our teaching reflects this making the most of our
cutting edge research tools new forms of data and long standing non
academic partnerships to train the next generation of urban scientists
with the skills and ideas they ll need to have an impact in industry gov-
ernment academia and the third sector the casa community is closely
connected but strongly interdisciplinary we bring together people from
around the world with a unique variety of backgrounds including physi-
cists planners geographers economists data scientists architects math-
ematicians and computer scientists united by our mission to tackle the
biggest challenges facing cities and societies around the world we work
across multiple scales: from the hyper local environment of the low pow-
ered sensor all the way up to satellite remote sensing of whole coun-
tries and regions studying at casa brings lifelong value with our students
poised to take on leadership and integration roles at the forefront of ur-
ban and spatial data science by studying with us you will become part
of our active and engaged alumni community with access to job listings
networking and social activities as well as continued contact with our out-
standing teachers and researchers location the ucl centre for advanced
spatial analysis is located at 90 tottenham court road london w1t 4tj

Substituted

view map

Substituted

contact address: ucl centre for advanced spatial analysis first floor 90
tottenham court road london w1t 4tj telephone: 44 0 20 3108 3877 email:
casa@ucl ac uk

11

Tokenised

[‘ucl’, ‘home’, ‘the’, ‘bartlett’, ‘centre’, ‘for’, ‘advanced’, ‘spatial’, ‘analysis’,
‘about’]

Tokenised

[‘about’]

Tokenised

[‘the’, ‘centre’, ‘for’, ‘advanced’, ‘spatial’, ‘analysis’, ‘(’, ‘casa’, ‘)’, ‘is’, ‘an’,
‘interdisciplinary’, ‘research’, ‘institute’, ‘focusing’, ‘on’, ‘the’, ‘science’, ‘of’,
‘cities’, ‘within’, ‘the’, ‘bartlett’, ‘faculty’, ‘of’, ‘the’, ‘built’, ‘environment’, ‘at’,
‘ucl’, ‘.’]

Tokenised

[‘the’, ‘centre’, ‘for’, ‘advanced’, ‘spatial’, ‘analysis’, ‘(’, ‘casa’, ‘)’, ‘was’,
‘established’, ‘in’, ‘1995’, ‘to’, ‘lead’, ‘the’, ‘development’, ‘of’, ‘a’, ‘science’,
‘of’, ‘cities’, ‘drawing’, ‘upon’, ‘methods’, ‘and’, ‘ideas’, ‘in’, ‘modelling’,
‘and’, ‘data’, ‘science’, ‘,’, ‘sensing’, ‘the’, ‘urban’, ‘environment’, ‘,’, ‘visu-
alisation’, ‘and’, ‘computation’, ‘.’, ‘today’, ‘,’, ‘casa’, ’ ’ ‘, ’s’, ‘research’, ‘is’,
‘still’, ‘pushing’, ‘boundaries’, ‘to’, ‘create’, ‘better’, ‘cities’, ‘for’, ‘everyone’,
‘,’, ‘both’, ‘leading’, ‘the’, ‘intellectual’, ‘agenda’, ‘and’, ‘working’, ‘closely’,
‘with’, ‘government’, ‘and’, ‘industry’, ‘partners’, ‘to’, ‘make’, ‘real-world’,
‘impact’, ‘.’, ‘our’, ‘teaching’, ‘reflects’, ‘this’, ‘,’, ‘making’, ‘the’, ‘most’, ‘of’,
‘our’, ‘cutting-edge’, ‘research’, ‘,’, ‘tools’, ‘,’, ‘new’, ‘forms’, ‘of’, ‘data’, ‘,’, ‘and’,
‘long-standing’, ‘non-academic’, ‘partnerships’, ‘to’, ‘train’, ‘the’, ‘next’,
‘generation’, ‘of’, ‘urban’, ‘scientists’, ‘with’, ‘the’, ‘skills’, ‘and’, ‘ideas’, ‘they’,
’ ’ ‘, ’ll’, ‘need’, ‘to’, ‘have’, ‘an’, ‘impact’, ‘in’, ‘industry’, ‘,’, ‘government’,
‘,’, ‘academia’, ‘,’, ‘and’, ‘the’, ‘third’, ‘sector’, ‘.’, ‘the’, ‘casa’, ‘community’,
‘is’, ‘closely’, ‘connected’, ‘,’, ‘but’, ‘strongly’, ‘interdisciplinary’, ‘.’, ‘we’,
‘bring’, ‘together’, ‘people’, ‘from’, ‘around’, ‘the’, ‘world’, ‘with’, ‘a’, ‘unique’,
‘variety’, ‘of’, ‘backgrounds’, ‘–’, ‘including’, ‘physicists’, ‘,’, ‘planners’, ‘,’,
‘geographers’, ‘,’, ‘economists’, ‘,’, ‘data’, ‘scientists’, ‘,’, ‘architects’, ‘,’, ‘math-
ematicians’, ‘and’, ‘computer’, ‘scientists’, ‘–’, ‘united’, ‘by’, ‘our’, ‘mission’,
‘to’, ‘tackle’, ‘the’, ‘biggest’, ‘challenges’, ‘facing’, ‘cities’, ‘and’, ‘societies’,
‘around’, ‘the’, ‘world’, ‘.’, ‘we’, ‘work’, ‘across’, ‘multiple’, ‘scales’, ‘:’, ‘from’,
‘the’, ‘hyper-local’, ‘environment’, ‘of’, ‘the’, ‘low-powered’, ‘sensor’, ‘all’,
‘the’, ‘way’, ‘up’, ‘to’, ‘satellite’, ‘remote’, ‘sensing’, ‘of’, ‘whole’, ‘countries’,
‘and’, ‘regions’, ‘.’, ‘studying’, ‘at’, ‘casa’, ‘brings’, ‘lifelong’, ‘value’, ‘,’, ‘with’,
‘our’, ‘students’, ‘poised’, ‘to’, ‘take’, ‘on’, ‘leadership’, ‘and’, ‘integration’,
‘roles’, ‘at’, ‘the’, ‘forefront’, ‘of’, ‘urban’, ‘and’, ‘spatial’, ‘data’, ‘science’, ‘.’,
‘by’, ‘studying’, ‘with’, ‘us’, ‘you’, ‘will’, ‘become’, ‘part’, ‘of’, ‘our’, ‘active’,
‘and’, ‘engaged’, ‘alumni’, ‘community’, ‘,’, ‘with’, ‘access’, ‘to’, ‘job’, ‘listings’,
‘,’, ‘networking’, ‘and’, ‘social’, ‘activities’, ‘,’, ‘as’, ‘well’, ‘as’, ‘continued’, ‘con-
tact’, ‘with’, ‘our’, ‘outstanding’, ‘teachers’, ‘and’, ‘researchers’, ‘.’, ‘location’,
‘the’, ‘ucl’, ‘centre’, ‘for’, ‘advanced’, ‘spatial’, ‘analysis’, ‘is’, ‘located’, ‘at’,
‘90’, ‘tottenham’, ‘court’, ‘road’, ‘,’, ‘london’, ‘,’, ‘w1t’, ‘4tj’, ‘.’]

12

Tokenised

[‘view’, ‘map’]

Tokenised

[‘contact’, ‘address’, ‘:’, ‘ucl’, ‘centre’, ‘for’, ‘advanced’, ‘spatial’, ‘analysis’,
‘first’, ‘floor’, ‘,’, ‘90’, ‘tottenham’, ‘court’, ‘road’, ‘london’, ‘w1t’, ‘4tj’, ‘tele-
phone’, ‘:’, ‘+44’, ‘(’, ‘0’, ‘)’, ‘20’, ‘3108’, ‘3877’, ‘email’, ‘:’, ‘casa’, ‘@’, ‘ucl.ac.uk’]

3.5 Stopword Removal

Difficulty Level: Moderate

You need to remember how list comprehensions work to use the stopword_list.

stopword_list = set(stopwords.words('english'))
print(stopword_list)

{'a', 'they', 'but', 'few', 'haven', 'those', 'himself', 'do', 'not', 'too', "shan't", 're', 'about', 'up', 'between', 'the', 'that', 'only', "hasn't", 'then', 'here', "mustn't", 'yourself', 'once', 'theirs', 'both', 'them', 'ourselves', 'above', 'needn', "haven't", 'through', 'his', 'been', 'm', "didn't", "shouldn't", 'doesn', 'off', 'any', 'after', 'as', 'yourselves', 'he', 'other', "don't", 's', "that'll", "couldn't", 'each', 'themselves', 'wouldn', 'what', "aren't", "it's", 'had', "needn't", 'i', 'o', 'yours', 'my', 'so', 'if', 'y', 'because', 'just', "wouldn't", 'shouldn', 'herself', 'where', 'is', 'down', 'myself', 'ours', 'such', "isn't", 'did', 'our', 'with', "hadn't", 'while', 'how', 'all', 'until', 'same', 'being', 'which', 'than', 'these', 'own', 'ain', 'mustn', 'no', 'll', 'an', 'didn', 'its', 'your', 'him', 'you', 'will', 'some', 'me', 'was', 'couldn', 'in', "should've", 'are', 'hadn', 'when', 'their', 'weren', 'hers', "you'd", 'and', 'having', 'doing', 'there', 'her', 'have', 'wasn', 'has', "doesn't", 'by', 'now', 'were', 'shan', 'to', "weren't", 'at', 'out', 'this', 'into', "mightn't", 't', "she's", 'hasn', 'who', 'am', 'it', 'won', "you're", 'most', 'should', 'again', 'd', 'or', 'of', 'be', 'during', 'nor', "you've", 'can', 'below', 'aren', 'for', 'over', 'she', 'itself', 'we', 'further', "you'll", 'mightn', 'why', 'isn', 'against', "wasn't", 'from', 'does', 'very', 'before', 'more', 've', 'under', "won't", 'ma', 'whom', 'on', 'don'}

Question

stopped = []
for p in tokens[2:4]: # <-- why do I just take these items from the list?

stopped.append([x for x in p if x not in ??? and len(x) > 1])

for s in stopped:
as_markdown("Line", s)

Answer

stopped = []
for p in tokens[2:4]: # <-- why do I just take these items from the list?

stopped.append([x for x in p if x not in stopword_list and len(x) > 1])

for s in stopped:
as_markdown("Line", s)

Line

[‘centre’, ‘advanced’, ‘spatial’, ‘analysis’, ‘casa’, ‘interdisciplinary’, ‘re-
search’, ‘institute’, ‘focusing’, ‘science’, ‘cities’, ‘within’, ‘bartlett’, ‘faculty’,
‘built’, ‘environment’, ‘ucl’]

13

Line

[‘centre’, ‘advanced’, ‘spatial’, ‘analysis’, ‘casa’, ‘established’, ‘1995’, ‘lead’,
‘development’, ‘science’, ‘cities’, ‘drawing’, ‘upon’, ‘methods’, ‘ideas’, ‘mod-
elling’, ‘data’, ‘science’, ‘sensing’, ‘urban’, ‘environment’, ‘visualisation’,
‘computation’, ‘today’, ‘casa’, ‘research’, ‘still’, ‘pushing’, ‘boundaries’,
‘create’, ‘better’, ‘cities’, ‘everyone’, ‘leading’, ‘intellectual’, ‘agenda’,
‘working’, ‘closely’, ‘government’, ‘industry’, ‘partners’, ‘make’, ‘real-world’,
‘impact’, ‘teaching’, ‘reflects’, ‘making’, ‘cutting-edge’, ‘research’, ‘tools’,
‘new’, ‘forms’, ‘data’, ‘long-standing’, ‘non-academic’, ‘partnerships’, ‘train’,
‘next’, ‘generation’, ‘urban’, ‘scientists’, ‘skills’, ‘ideas’, ‘need’, ‘impact’,
‘industry’, ‘government’, ‘academia’, ‘third’, ‘sector’, ‘casa’, ‘community’,
‘closely’, ‘connected’, ‘strongly’, ‘interdisciplinary’, ‘bring’, ‘together’,
‘people’, ‘around’, ‘world’, ‘unique’, ‘variety’, ‘backgrounds’, ‘including’,
‘physicists’, ‘planners’, ‘geographers’, ‘economists’, ‘data’, ‘scientists’,
‘architects’, ‘mathematicians’, ‘computer’, ‘scientists’, ‘united’, ‘mission’,
‘tackle’, ‘biggest’, ‘challenges’, ‘facing’, ‘cities’, ‘societies’, ‘around’, ‘world’,
‘work’, ‘across’, ‘multiple’, ‘scales’, ‘hyper-local’, ‘environment’, ‘low-
powered’, ‘sensor’, ‘way’, ‘satellite’, ‘remote’, ‘sensing’, ‘whole’, ‘countries’,
‘regions’, ‘studying’, ‘casa’, ‘brings’, ‘lifelong’, ‘value’, ‘students’, ‘poised’,
‘take’, ‘leadership’, ‘integration’, ‘roles’, ‘forefront’, ‘urban’, ‘spatial’, ‘data’,
‘science’, ‘studying’, ‘us’, ‘become’, ‘part’, ‘active’, ‘engaged’, ‘alumni’,
‘community’, ‘access’, ‘job’, ‘listings’, ‘networking’, ‘social’, ‘activities’, ‘well’,
‘continued’, ‘contact’, ‘outstanding’, ‘teachers’, ‘researchers’, ‘location’,
‘ucl’, ‘centre’, ‘advanced’, ‘spatial’, ‘analysis’, ‘located’, ‘90’, ‘tottenham’,
‘court’, ‘road’, ‘london’, ‘w1t’, ‘4tj’]

3.6 Lemmatisation vs Stemming

Difficulty level: Low.

from nltk.stem.porter import PorterStemmer
from nltk.stem.snowball import SnowballStemmer
from nltk.stem.wordnet import WordNetLemmatizer

lemmatizer = WordNetLemmatizer()
print(lemmatizer.lemmatize('monkeys'))
print(lemmatizer.lemmatize('cities'))
print(lemmatizer.lemmatize('complexity'))
print(lemmatizer.lemmatize('Reades'))

monkey
city
complexity
Reades

14

stemmer = PorterStemmer()
print(stemmer.stem('monkeys'))
print(stemmer.stem('cities'))
print(stemmer.stem('complexity'))
print(stemmer.stem('Reades'))

monkey
citi
complex
read

stemmer = SnowballStemmer(language='english')
print(stemmer.stem('monkeys'))
print(stemmer.stem('cities'))
print(stemmer.stem('complexity'))
print(stemmer.stem('Reades'))

monkey
citi
complex
read

lemmatizer = WordNetLemmatizer()
lemmas = []
stemmed = []

This would be better if we passed in a PoS (Part of Speech) tag as well,
but processing text for parts of speech is *expensive* and for the purposes
of this tutorial, not necessary.
for s in stopped:

lemmas.append([lemmatizer.lemmatize(x) for x in s])

for s in stopped:
stemmed.append([stemmer.stem(x) for x in s])

for l in lemmas:
as_markdown('Lemmatised',l)

for s in stemmed:
as_markdown('Stemmed',s)

Lemmatised

[‘centre’, ‘advanced’, ‘spatial’, ‘analysis’, ‘casa’, ‘interdisciplinary’, ‘re-
search’, ‘institute’, ‘focusing’, ‘science’, ‘city’, ‘within’, ‘bartlett’, ‘faculty’,
‘built’, ‘environment’, ‘ucl’]

15

Lemmatised

[‘centre’, ‘advanced’, ‘spatial’, ‘analysis’, ‘casa’, ‘established’, ‘1995’, ‘lead’,
‘development’, ‘science’, ‘city’, ‘drawing’, ‘upon’, ‘method’, ‘idea’, ‘mod-
elling’, ‘data’, ‘science’, ‘sensing’, ‘urban’, ‘environment’, ‘visualisation’,
‘computation’, ‘today’, ‘casa’, ‘research’, ‘still’, ‘pushing’, ‘boundary’, ‘cre-
ate’, ‘better’, ‘city’, ‘everyone’, ‘leading’, ‘intellectual’, ‘agenda’, ‘working’,
‘closely’, ‘government’, ‘industry’, ‘partner’, ‘make’, ‘real-world’, ‘impact’,
‘teaching’, ‘reflects’, ‘making’, ‘cutting-edge’, ‘research’, ‘tool’, ‘new’,
‘form’, ‘data’, ‘long-standing’, ‘non-academic’, ‘partnership’, ‘train’, ‘next’,
‘generation’, ‘urban’, ‘scientist’, ‘skill’, ‘idea’, ‘need’, ‘impact’, ‘industry’,
‘government’, ‘academia’, ‘third’, ‘sector’, ‘casa’, ‘community’, ‘closely’,
‘connected’, ‘strongly’, ‘interdisciplinary’, ‘bring’, ‘together’, ‘people’,
‘around’, ‘world’, ‘unique’, ‘variety’, ‘background’, ‘including’, ‘physicist’,
‘planner’, ‘geographer’, ‘economist’, ‘data’, ‘scientist’, ‘architect’, ‘math-
ematician’, ‘computer’, ‘scientist’, ‘united’, ‘mission’, ‘tackle’, ‘biggest’,
‘challenge’, ‘facing’, ‘city’, ‘society’, ‘around’, ‘world’, ‘work’, ‘across’,
‘multiple’, ‘scale’, ‘hyper-local’, ‘environment’, ‘low-powered’, ‘sensor’,
‘way’, ‘satellite’, ‘remote’, ‘sensing’, ‘whole’, ‘country’, ‘region’, ‘studying’,
‘casa’, ‘brings’, ‘lifelong’, ‘value’, ‘student’, ‘poised’, ‘take’, ‘leadership’,
‘integration’, ‘role’, ‘forefront’, ‘urban’, ‘spatial’, ‘data’, ‘science’, ‘studying’,
‘u’, ‘become’, ‘part’, ‘active’, ‘engaged’, ‘alumnus’, ‘community’, ‘access’,
‘job’, ‘listing’, ‘networking’, ‘social’, ‘activity’, ‘well’, ‘continued’, ‘contact’,
‘outstanding’, ‘teacher’, ‘researcher’, ‘location’, ‘ucl’, ‘centre’, ‘advanced’,
‘spatial’, ‘analysis’, ‘located’, ‘90’, ‘tottenham’, ‘court’, ‘road’, ‘london’, ‘w1t’,
‘4tj’]

Stemmed

[‘centr’, ‘advanc’, ‘spatial’, ‘analysi’, ‘casa’, ‘interdisciplinari’, ‘research’,
‘institut’, ‘focus’, ‘scienc’, ‘citi’, ‘within’, ‘bartlett’, ‘faculti’, ‘built’, ‘environ’,
‘ucl’]

Stemmed

[‘centr’, ‘advanc’, ‘spatial’, ‘analysi’, ‘casa’, ‘establish’, ‘1995’, ‘lead’, ‘de-
velop’, ‘scienc’, ‘citi’, ‘draw’, ‘upon’, ‘method’, ‘idea’, ‘model’, ‘data’, ‘scienc’,
‘sens’, ‘urban’, ‘environ’, ‘visualis’, ‘comput’, ‘today’, ‘casa’, ‘research’,
‘still’, ‘push’, ‘boundari’, ‘creat’, ‘better’, ‘citi’, ‘everyon’, ‘lead’, ‘intellectu’,
‘agenda’, ‘work’, ‘close’, ‘govern’, ‘industri’, ‘partner’, ‘make’, ‘real-world’,
‘impact’, ‘teach’, ‘reflect’, ‘make’, ‘cutting-edg’, ‘research’, ‘tool’, ‘new’,
‘form’, ‘data’, ‘long-stand’, ‘non-academ’, ‘partnership’, ‘train’, ‘next’, ‘gen-
erat’, ‘urban’, ‘scientist’, ‘skill’, ‘idea’, ‘need’, ‘impact’, ‘industri’, ‘govern’,
‘academia’, ‘third’, ‘sector’, ‘casa’, ‘communiti’, ‘close’, ‘connect’, ‘strong’,
‘interdisciplinari’, ‘bring’, ‘togeth’, ‘peopl’, ‘around’, ‘world’, ‘uniqu’, ‘varieti’,
‘background’, ‘includ’, ‘physicist’, ‘planner’, ‘geograph’, ‘economist’, ‘data’,
‘scientist’, ‘architect’, ‘mathematician’, ‘comput’, ‘scientist’, ‘unit’, ‘mission’,
‘tackl’, ‘biggest’, ‘challeng’, ‘face’, ‘citi’, ‘societi’, ‘around’, ‘world’, ‘work’,
‘across’, ‘multipl’, ‘scale’, ‘hyper-loc’, ‘environ’, ‘low-pow’, ‘sensor’, ‘way’,
‘satellit’, ‘remot’, ‘sens’, ‘whole’, ‘countri’, ‘region’, ‘studi’, ‘casa’, ‘bring’, ‘life-
long’, ‘valu’, ‘student’, ‘pois’, ‘take’, ‘leadership’, ‘integr’, ‘role’, ‘forefront’,

16

‘urban’, ‘spatial’, ‘data’, ‘scienc’, ‘studi’, ‘us’, ‘becom’, ‘part’, ‘activ’, ‘engag’,
‘alumni’, ‘communiti’, ‘access’, ‘job’, ‘list’, ‘network’, ‘social’, ‘activ’, ‘well’,
‘continu’, ‘contact’, ‘outstand’, ‘teacher’, ‘research’, ‘locat’, ‘ucl’, ‘centr’,
‘advanc’, ‘spatial’, ‘analysi’, ‘locat’, ‘90’, ‘tottenham’, ‘court’, ‘road’, ‘london’,
‘w1t’, ‘4tj’]

What are we doing here?
for ix, p in enumerate(stopped):

stopped_set = set(stopped[ix])
lemma_set = set(lemmas[ix])
print(sorted(stopped_set.symmetric_difference(lemma_set)))

['cities', 'city']
['activities', 'activity', 'alumni', 'alumnus', 'architect', 'architects', 'background', 'backgrounds', 'boundaries', 'boundary', 'challenge', 'challenges', 'cities', 'city', 'countries', 'country', 'economist', 'economists', 'form', 'forms', 'geographer', 'geographers', 'idea', 'ideas', 'listing', 'listings', 'mathematician', 'mathematicians', 'method', 'methods', 'partner', 'partners', 'partnership', 'partnerships', 'physicist', 'physicists', 'planner', 'planners', 'region', 'regions', 'researcher', 'researchers', 'role', 'roles', 'scale', 'scales', 'scientist', 'scientists', 'skill', 'skills', 'societies', 'society', 'student', 'students', 'teacher', 'teachers', 'tool', 'tools', 'u', 'us']

4 Applying Normalisation

The above approach is fairly hard going since you need to loop through every list
element applying these changes one at a time. Instead, we could convert the column
to a corpus (or use pandas apply) together with a function imported from a library
to do the work.

4.1 Downloading the Custom Module

Difficulty level: Low.

This custom module is not perfect, but it gets the job done… mostly and has
some additional features that you could play around with for a final project
(e.g. detect_entities and detect_acronyms).

import urllib.request
host = 'https://orca.casa.ucl.ac.uk'
turl = f'{host}/~jreades/__textual__.py'
tdirs = os.path.join('textual')
tpath = os.path.join(tdirs,'__init__.py')

if not os.path.exists(tpath):
os.makedirs(tdirs, exist_ok=True)
urllib.request.urlretrieve(turl, tpath)

17

4.2 Importing the Custom Module

Difficulty Level: Low.

But only because you didn’t have to write the module! However, the questions
could be hard…

In a Jupyter notebook, this code allows us to edit and reload the library dynami-
cally:

%load_ext autoreload
%autoreload 2

Now let’s import it.

from textual import *

All NLTK libraries installed...

as_markdown('Input', cleaned)

Input

[‘UCL Home The Bartlett Centre for Advanced Spatial Analysis About’,
‘About’, ‘The Centre for Advanced Spatial Analysis (CASA) is an inter-
disciplinary research institute focusing on the science of cities within
The Bartlett Faculty of the Built Environment at UCL.’, ‘The Centre for
Advanced Spatial Analysis (CASA) was established in 1995 to lead the
development of a science of cities drawing upon methods and ideas
in modelling and data science, sensing the urban environment, vi-
sualisation and computation. Today, CASA’s research is still pushing
boundaries to create better cities for everyone, both leading the in-
tellectual agenda and working closely with government and industry
partners to make real-world impact. Our teaching reflects this, making
the most of our cutting-edge research, tools, new forms of data, and
long-standing non-academic partnerships to train the next generation
of urban scientists with the skills and ideas they’ll need to have an
impact in industry, government, academia, and the third sector. The
CASA community is closely connected, but strongly interdisciplinary. We
bring together people from around the world with a unique variety of
backgrounds – including physicists, planners, geographers, economists,
data scientists, architects, mathematicians and computer scientists
– united by our mission to tackle the biggest challenges facing cities
and societies around the world. We work across multiple scales: from
the hyper-local environment of the low-powered sensor all the way up
to satellite remote sensing of whole countries and regions. Studying
at CASA brings lifelong value, with our students poised to take on
leadership and integration roles at the forefront of urban and spatial
data science. By studying with us you will become part of our active

18

and engaged alumni community, with access to job listings, networking
and social activities, as well as continued contact with our outstanding
teachers and researchers. Location The UCL Centre for Advanced Spatial
Analysis is located at 90 Tottenham Court Road, London, W1T 4TJ.’, ‘View
Map’, ‘Contact Address: UCL Centre for Advanced Spatial Analysis First
Floor, 90 Tottenham Court Road London W1T 4TJ Telephone: +44 (0)20
3108 3877 Email: casa@ucl.ac.uk’]

as_markdown('Normalised', [normalise_document(x, remove_digits=True) for x in cleaned])

Normalised

[‘home bartlett centre advanced spatial analysis’, ’ ‘, ’centre advanced spa-
tial analysis . casa . interdisciplinary research institute focus science city
within bartlett faculty built environment .’, ‘centre advanced spatial anal-
ysis . casa . establish lead development science city draw upon method
idea modelling data science sense urban environment visualisation com-
putation . today research still push boundary create good city everyone
lead intellectual agenda work closely government industry partner make
realworld impact . teaching reflect make cuttingedge research tool form
data longstanding nonacademic partnership train next generation urban
scientist skill idea need impact industry government academia third sec-
tor . casa community closely connect strongly interdisciplinary . bring
together people around world unique variety background include physi-
cist planner geographer economist data scientist architect mathemati-
cian computer scientist unite mission tackle challenge face city society
around world . work across multiple scale hyperlocal environment low-
powered sensor satellite remote sensing whole country region . studying
casa bring lifelong value student poise take leadership integration role
forefront urban spatial data science . study become part active engage
alumnus community access listing network social activity well continue
contact outstanding teacher researcher . location centre advanced spa-
tial analysis locate tottenham court road london .’, ‘view’, ‘contact address
centre advanced spatial analysis first floor tottenham court road london
telephone . email casa ucl.ac.uk’]

help(normalise_document)

Help on function normalise_document in module textual:

normalise_document(doc: str, html_stripping=True, contraction_expansion=True, accented_char_removal=True, text_lower_case=True, text_lemmatization=True, special_char_removal=False, punctuation_removal=True, keep_sentences=True, stopword_removal=True, remove_digits=False, infer_numbers=True, shortest_word=3) -> str
Apply all of the functions above to a document using their
default values so as to demonstrate the NLP process.

doc: a document to clean.

4.2.1 Questions

Let’s assume that you want to analyse web page content…

19

• Based on the above output, what stopwords do you think are missing?
• Based on the above output, what should be removed but isn’t?
• Based on the above output, how do you think a computer can work with this
text?

Stop!

Beyond this point, we are moving into Natural Language Processing. If you are
already struggling with regular expressions, I would recommend stopping here.
You can come back to revisit the NLP components and creation of word clouds
later.

5 Revenons à Nos Moutons

Now that you’ve seen how the steps are applied to a ‘random’ HTML document, let’s
get back to the problem at hand (revenons à nos moutons == let’s get back to our
sheep).

5.1 Process the Selected Listings

Difficulty level: Low, but you’ll need to be patient!

Notice the use of %%time here – this will tell you how long each block of code takes
to complete. It’s a really useful technique for reminding yourself and others of how
long something might take to run. I find that with NLP this is particularly important
since you have to do a lot of processing on each document in order to normalise
it.

Tip

Notice how we can change the default parameters for normalise_document
even when using apply, but that the syntax is different. So whereas we’d use
normalise_document(doc, remove_digits=True) if calling the function directly,
here it’s .apply(normalise_document, remove_digits=True)!

Question

%%time
I get about 1 minute on a M2 Mac
lux['description_norm'] = lux.???.apply(???, remove_digits=True)

%%time
I get about 1 minute on a M2 Mac
aff['description_norm'] = aff.???.apply(???, remove_digits=True)

20

%%time
I get about 2 seconds on a M2 Mac
bluesp['description_norm'] = bluesp.???.apply(???, remove_digits=True)

Answer

%%time
I get about 1 minute on a M2 Mac
lux['description_norm'] = lux.description.apply(normalise_document, remove_digits=True)

/Users/jreades/Documents/git/fsds/practicals/textual/__init__.py:606: MarkupResemblesLocatorWarning:

The input looks more like a filename than markup. You may want to open this file and pass the filehandle into Beautiful Soup.

CPU times: user 43.3 s, sys: 886 ms, total: 44.2 s
Wall time: 44.2 s

%%time
I get about 1 minute on a M2 Mac
aff['description_norm'] = aff.description.apply(normalise_document, remove_digits=True)

/Users/jreades/Documents/git/fsds/practicals/textual/__init__.py:606: MarkupResemblesLocatorWarning:

The input looks more like a filename than markup. You may want to open this file and pass the filehandle into Beautiful Soup.

CPU times: user 37 s, sys: 823 ms, total: 37.8 s
Wall time: 37.8 s

%%time
I get about 1 seconds on a M2 Mac
bluesp['description_norm'] = bluesp.description.apply(normalise_document, remove_digits=True)

CPU times: user 1.58 s, sys: 35.9 ms, total: 1.62 s
Wall time: 1.62 s

5.2 Select and Tokenise

Difficulty level: Low, except for the double list-comprehension.

21

5.2.1 Select and Extract Corpus

See useful tutorial here. Although we shouldn’t have any empty descriptions, by the
time we’ve finished normalising the textual data we may have created some empty
values andwe need to ensure that we don’t accidentally pass a NaN to the vectorisers
and frequency distribution functions.

srcdf = bluesp

Coding Tip

Notice how you only need to change the value of the variable here to try any of
the different selections we did above? This is a simple kind of parameterisation
somewhere between a function and hard-coding everything.

corpus = srcdf.description_norm.fillna(' ').values
print(corpus[0:3])

['house garden close thames river . walk private road river nearby . district line underground . walk . direct access central london near gardens . kids playground walk distance along thames path . space residential neighborhood english corporate expat family . house culdesac private road river thames . river foot away . walking distance subway . central london underground district line . gardens stop walk zone . addition overground stratford also stop gardens underground station . gardens stop walk . overland railway station bridge . walk . take waterloo railway station minute . bicycle follow towpath hammersmith bridge continue putney bridge . lastly several stree'
'space appartment upper floor modernised secure building near canary wharf fantastic view river thames london . offer home home experience light breafast fresh juice coffee . double room plenty storage fresh towels linen . shared bathroom step shower hairdryer essentials . wifi service . appartment minutes walk nearest . south quay . london underground . canary wharf . network central london right next stop . close asda tesco supermarkets chains plenty local shop restaurants . walking distance city farm greenwich foot tunnel fabulous walkway along river front . also hour medical center close appartment questions'
'newly renovate totally equipped furnished modern apartment heart london . easily accessible kind transport . walk waterloo station london . space newly renovate totally equipped furnished modern apartment heart london . easily accessible kind transport . walk waterloo station london . apartment flat broadband wash machine microwave iron nespresso coffee machine . large live room easily divide space . modern comfortable bathroom whirlpool japanese . bedroom modern design closet . shared terrace view picturesque vivid lower marsh street london . lower marsh london best hidden jewel special alive place bridget jones bourne identit']

5.2.2 Tokenise

There are different forms of tokenisation and different algorithms will expect differ-
ing inputs. Here are two:

sentences = [nltk.sent_tokenize(text) for text in corpus]
words = [[nltk.tokenize.word_tokenize(sentence)

for sentence in nltk.sent_tokenize(text)]
for text in corpus]

Notice how this has turned every sentence into an array and each document into an
array of arrays:

print(f"Sentences 0: {sentences[0]}")
print()
print(f"Words 0: {words[0]}")

Sentences 0: ['house garden close thames river .', 'walk private road river nearby .', 'district line underground .', 'walk .', 'direct access central london near gardens .', 'kids playground walk distance along thames path .', 'space residential neighborhood english corporate expat family .', 'house culdesac private road river thames .', 'river foot away .', 'walking distance subway .', 'central london underground district line .', 'gardens stop walk zone .', 'addition overground stratford also stop gardens underground station .', 'gardens stop walk .', 'overland railway station bridge .', 'walk .', 'take waterloo railway station minute .', 'bicycle follow towpath hammersmith bridge continue putney bridge .', 'lastly several stree']

Words 0: [['house', 'garden', 'close', 'thames', 'river', '.'], ['walk', 'private', 'road', 'river', 'nearby', '.'], ['district', 'line', 'underground', '.'], ['walk', '.'], ['direct', 'access', 'central', 'london', 'near', 'gardens', '.'], ['kids', 'playground', 'walk', 'distance', 'along', 'thames', 'path', '.'], ['space', 'residential', 'neighborhood', 'english', 'corporate', 'expat', 'family', '.'], ['house', 'culdesac', 'private', 'road', 'river', 'thames', '.'], ['river', 'foot', 'away', '.'], ['walking', 'distance', 'subway', '.'], ['central', 'london', 'underground', 'district', 'line', '.'], ['gardens', 'stop', 'walk', 'zone', '.'], ['addition', 'overground', 'stratford', 'also', 'stop', 'gardens', 'underground', 'station', '.'], ['gardens', 'stop', 'walk', '.'], ['overland', 'railway', 'station', 'bridge', '.'], ['walk', '.'], ['take', 'waterloo', 'railway', 'station', 'minute', '.'], ['bicycle', 'follow', 'towpath', 'hammersmith', 'bridge', 'continue', 'putney', 'bridge', '.'], ['lastly', 'several', 'stree']]

22

https://towardsdatascience.com/tf-idf-explained-and-python-sklearn-implementation-b020c5e83275

5.3 Frequencies and Ngrams

Difficulty level: Moderate.

One new thing you’ll see here is the ngram: ngrams are ‘simply’ pairs, or triplets, or
quadruplets of words. Youmay come across the terms unigram (ngram(1,1)), bigram
(ngram(2,2)), trigram (ngram(3,3))… typically, you will rarely find anything beyond
trigrams, and these present real issues for text2vec algorithms because the embed-
ding for geographical, information, and systems is not the same as for geographical
information systetms.

5.3.1 Build Frequency Distribution

Build counts for ngram range 1..3:

fcounts = dict()

Here we replace all full-stops... can you think why we might do this?
data = nltk.tokenize.word_tokenize(' '.join([text.replace('.','') for text in corpus]))

for size in 1, 2, 3:
fdist = FreqDist(ngrams(data, size))
print(fdist)
If you only need one note this: https://stackoverflow.com/a/52193485/4041902
fcounts[size] = pd.DataFrame.from_dict({f'Ngram Size {size}': fdist})

<FreqDist with 2692 samples and 26245 outcomes>
<FreqDist with 14173 samples and 26244 outcomes>
<FreqDist with 19540 samples and 26243 outcomes>

5.3.2 Output Top-n Ngrams

And output the most common ones for each ngram range:

for dfs in fcounts.values():
print(dfs.sort_values(by=dfs.columns.values[0], ascending=False).head(10))
print()

Ngram Size 1
walk 594
room 472
london 469
river 418
bedroom 412
space 391
minute 382

23

apartment 373
station 307
flat 303

Ngram Size 2
minute walk 252
river thames 138

view 138
living room 134
canary wharf 112
guest access 110
central london 107
fully equip 76
equip kitchen 71
thames river 65

Ngram Size 3
fully equip kitchen 68
walk river thames 37
close river thames 35
walk thames river 27
minute walk river 23
open plan kitchen 20
thames river view 20
sofa living room 19
within walk distance 19
open plan live 18

5.3.3 Questions

• Can you think why we don’t care about punctuation for frequency distributions
and n-grams?

• Do you understand what n-grams are?

5.4 Count Vectoriser

Difficulty level: Low, but the output needs some thought!

This is a big foray into sklearn (sci-kit learn) which is the main machine learning
and clustering module for Python. For processing text we use vectorisers to convert
terms to a vector representation. We’re doing this on the smallest of the derived data
sets because these processes can take a while to run and generate huge matrices
(remember: one row and one column for each term!).

24

5.4.1 Fit the Vectoriser

cvectorizer = CountVectorizer(ngram_range=(1,3))
cvectorizer.fit(corpus)

CountVectorizer(ngram_range=(1, 3))

5.4.2 Brief Demonstration

Find the number associated with a word in the vocabulary and how many times it
occurs in the original corpus:

term = 'stratford'
pd.options.display.max_colwidth=750
Find the vocabulary mapping for the term
print(f"Vocabulary mapping for {term} is {cvectorizer.vocabulary_[term]}")
How many times is it in the data
print(f"Found {srcdf.description_norm.str.contains(term).sum():,} rows containing {term}")
Print the descriptions containing the term
for x in srcdf[srcdf.description_norm.str.contains(term)].description_norm:

as_markdown('Stratford',x)

Vocabulary mapping for stratford is 29373
Found 10 rows containing stratford

Stratford

house garden close thames river . walk private road river nearby . dis-
trict line underground . walk . direct access central london near gardens
. kids playground walk distance along thames path . space residential
neighborhood english corporate expat family . house culdesac private
road river thames . river foot away . walking distance subway . central
london underground district line . gardens stop walk zone . addition
overground stratford also stop gardens underground station . gardens
stop walk . overland railway station bridge . walk . take waterloo railway
station minute . bicycle follow towpath hammersmith bridge continue
putney bridge . lastly several stree

Stratford

please read things note comfortable clean bright brand flat east london
minute central london tube quite central great transport link major lon-
don attraction minute walk river park undergroundtubedlr station super-
market docklands stratford olympic stadium westfield shopping centre .
enjoy brick lane indian restaurant spitalfields market colombian flower
market historical whitechapel . space please read things note nice clean
fresh bright airy . space perfect professional single person couple . make

25

feel like home choice anything like wake relaxing cooking . guest access
please read things note entire flat . please treat home away . please treat
.

Stratford

comfortable fairly flat east london travel zone minute central london
quite central great transport link major london attraction minute walk
river park undergroundtube station minute supermarket minute dock-
lands stratford olympic stadium westfield shopping centre . enjoy brick
lane indian restaurant spitalfields market colombian flower market his-
torical whitechapel . space spacious comfortable tidy clean airy relaxing
. live flat sleep open plan lounge balcony . guest access bathroom share .
welcome microwave ready meal toaster make drink till fridge store food
. please make sure clean clear immediately . dining table . stay present
morning evening weekend . also

Stratford

entire appartment double bedroom large living area.the apartment fea-
ture kitchen come free wifi flat screen tv.to make exicting luxurious even
free free sauna well . space stunning apartment london docklands bank
thames river close thames barrier park canary wharf . apartment floor
spacious living room balcony . nearest station pontoon dock walkable
distance direct train stratford . mins . bank . excel centre . walk . arena
canary wharf mins train mins central london . world heritage sitethames
barrier thames barrier park walk appartment . london city airport train
station away . fully kitchen bathroom broadband internet underground
secure parking onsite . attract

Stratford

luxurious bedroom apartment zone love hidden secret part town minute
away everywhere river view slow pace main artery town right doorstep
well hidden beauty park waterway . easy . walk tube route center town
well stratford olympic park canary wharf muchmuch right doorstep space
welcome home place love bedroom hold personal belonging bedroom
give guest idea size . bedroom large double accommodate comfortably .
sofa chair accommodate guest extra extra charge . welcome guest person-
ally wish know . therefore important check time convenient . midnight
arrival . time ehich discuss good

Stratford

place closemile tube station brick lane shoreditch queenmary university
london stratford westfield minute tube central london . love place newly
renovate flat amazing canal view guest bedroom clean friendly environ-
ment . place good couple solo adventurer business traveller .

26

Stratford

locate high street give amazing water view stadium sight amazing archi-
tectural structure walk pudding mill lane walk abba walk stratford west-
field walk stratfordstratford international station mins walk mins train
ride central london

Stratford

modern spacious bedroom suite apartment close river thames wimble-
don . situate wandsworth district london england lawn tennis club centre
court .km clapham junction . stratford bridge chelsea . city view free wifi
throughout property . apartment feature bedroom kitchen fridge oven
wash machine flat screen seating area bathroom shower . eventim .km
away .

Stratford

perfect group trip . modern spacious suite apartment close river thames
wimbledon . situated wandsworth district london england lawn tennis
club centre court .km clapham junction . stratford bridge chelsea . city
view free wifi throughout property . apartment feature bedroom kitchen
wfridge oven wash machine flat screen seating area bathroom wshower .
eventim .km away .

Stratford

flat locate zone east london near canary wharf . nice quiet residential
area canal . flat amazing canal view balcony . enjoy morning coffee swan
goose everyday . huge park opposite flat picnic . canary wharf shop mall
. mins bank stratford westfield . mins central oxford circus tube . locate
convenient transportation link .

5.4.3 Transform the Corpus

You can only tranform the entire corpus after the vectoriser has been fitted. There is
an option to fit_transform in one go, but I wanted to demonstrate a few things here
and some vectorisers are don’t support the one-shot fit-and-transform approach.
Note the type of the transformed corpus:

cvtcorpus = cvectorizer.transform(corpus)
cvtcorpus # cvtcorpus for count-vectorised transformed corpus

<408x35278 sparse matrix of type '<class 'numpy.int64'>'
with 71420 stored elements in Compressed Sparse Row format>

27

5.4.4 Single Document

Here is the first document from the corpus:

doc_df = pd.DataFrame(cvtcorpus[0].T.todense(),
index=cvectorizer.get_feature_names_out(), columns=["Counts"]

).sort_values('Counts', ascending=False)
doc_df.head(10)

Counts

walk 6
gardens 4
river 4
bridge 3
stop 3
thames 3
station 3
underground 3
railway 2
central london 2

5.4.5 Transformed Corpus

cvdf = pd.DataFrame(data=cvtcorpus.toarray(),
columns=cvectorizer.get_feature_names_out())

print(f"Raw count vectorised data frame has {cvdf.shape[0]:,} rows and {cvdf.shape[1]:,} columns.")
cvdf.iloc[0:5,0:10]

Raw count vectorised data frame has 408 rows and 35,278 columns.

aaathe aaathe apartment aaathe apartment quiet aand aand comfy aand comfy sofa abba abba arena abba arena entertainmentconcerts abba walk

0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0

5.4.6 Filter Low-Frequency Words

These are likely to be artefacts of text-cleaning or human input error. As well, if we’re
trying to look across an entire corpus then we might not want to retain words that
only appear in a couple of documents.

Let’s start by getting the column sums:

28

sums = cvdf.sum(axis=0)
print(f"There are {len(sums):,} terms in the data set.")
sums.head()

There are 35,278 terms in the data set.

aaathe 1
aaathe apartment 1
aaathe apartment quiet 1
aand 1
aand comfy 1
dtype: int64

Remove columns (i.e. terms) appearing in less than 1% of documents. You can do this
by thinking about what the shape of the data frame means (rows and/or columns)
and how you’d get 1% of that!

Question

filter_terms = sums >= cvdf.shape[0] * ???

Answer

filter_terms = sums >= cvdf.shape[0] * 0.01

Now see how we can use this to strip out the columns corresponding to low-
frequency terms:

fcvdf = cvdf.drop(columns=cvdf.columns[~filter_terms].values)
print(f"Filtered count vectorised data frame has {fcvdf.shape[0]:,} rows and {fcvdf.shape[1]:,} columns.")
fcvdf.iloc[0:5,0:10]

Filtered count vectorised data frame has 408 rows and 2,043 columns.

able access access access access bathroom access central access central london access entire access everything access full access guest

0 0 1 0 0 1 1 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0
4 0 1 0 0 0 0 0 0 0 0

fcvdf.sum(axis=0)

29

able 8
access 242
access access 7
access bathroom 5
access central 8

...
zone comfortable cosy 7
zone near 5
zone near underground 5
zone recently 10
zone recently refurbish 10
Length: 2043, dtype: int64

We’re going to pick this up again in Task 7.

5.4.7 Questions

• Can you explain what doc_df contains?
• What does cvdf contain? Explain the rows and columns.
• What is the function of filter_terms?

5.5 TF/IDF Vectoriser

Difficulty level: Moderate

But only if you want to understand how max_df and min_df work!

5.5.1 Fit and Transform

tfvectorizer = TfidfVectorizer(use_idf=True, ngram_range=(1,3),
max_df=0.75, min_df=0.01) # <-- these matter!

tftcorpus = tfvectorizer.fit_transform(corpus) # TF-transformed corpus

5.5.2 Single Document

doc_df = pd.DataFrame(tftcorpus[0].T.todense(), index=tfvectorizer.get_feature_names_out(), columns=["Weights"])
doc_df.sort_values('Weights', ascending=False).head(10)

Weights

gardens 0.414885
stop 0.241659
district line 0.239192
railway 0.232131
underground 0.201738

30

Weights

district 0.197221
bridge 0.191983
walk 0.189485
road 0.151163
distance 0.142999

5.5.3 Transformed Corpus

tfidf = pd.DataFrame(data=tftcorpus.toarray(),
columns=tfvectorizer.get_feature_names_out())

print(f"TF/IDF data frame has {tfidf.shape[0]:,} rows and {tfidf.shape[1]:,} columns.")
tfidf.head()

TF/IDF data frame has 408 rows and 1,911 columns.

able access access access access bathroom access central access central london access entire access everything access full access guest ... young zone zone central zone central city zone comfortable zone comfortable cosy zone near zone near underground zone recently zone recently refurbish

0 0.0 0.043972 0.0 0.0 0.11031 0.11031 0.0 0.0 0.0 0.0 ... 0.0 0.069702 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1 0.0 0.000000 0.0 0.0 0.00000 0.00000 0.0 0.0 0.0 0.0 ... 0.0 0.000000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2 0.0 0.000000 0.0 0.0 0.00000 0.00000 0.0 0.0 0.0 0.0 ... 0.0 0.000000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3 0.0 0.000000 0.0 0.0 0.00000 0.00000 0.0 0.0 0.0 0.0 ... 0.0 0.000000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
4 0.0 0.044127 0.0 0.0 0.00000 0.00000 0.0 0.0 0.0 0.0 ... 0.0 0.000000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

5.5.4 Questions

• What does the TF/IDF score represent?
• What is the role of max_df and min_df?

6 Word Clouds

6.1 For Counts

Difficulty level: Easy!

fcvdf.sum().sort_values(ascending=False)

walk 595
room 472
london 471
river 418
bedroom 412

31

...
chic 5
term 5
choice 5
teddington 5
london aquarium minute 5
Length: 2043, dtype: int64

ff = 'RobotoMono-VariableFont_wght.ttf'
dp = '/home/jovyan/.local/share/fonts/'
tp = os.path.join(os.path.expanduser('~'),'Library','Fonts')
if os.path.exists(tp):

fp = os.path.join(tp,ff)
else:

fp = os.path.join(dp,ff)

f,ax = plt.subplots(1,1,figsize=(8, 8))
plt.gcf().set_dpi(150)
Cloud = WordCloud(

background_color="white",
max_words=75,
font_path=fp

).generate_from_frequencies(fcvdf.sum())
ax.imshow(Cloud)
ax.axis("off");
#plt.savefig("Wordcloud 1.png")

32

6.2 For TF/IDF Weighting

Difficulty level: Low, but you’ll need to be patient!

tfidf.sum().sort_values(ascending=False)

walk 23.037285
room 19.135852
london 18.744519
minute 18.650909
apartment 18.082855

...
station apartment one 0.401426
station also close 0.401426
apartment one benefit 0.401426
apartment one 0.401426
also close station 0.401426
Length: 1911, dtype: float64

f,ax = plt.subplots(1,1,figsize=(8, 8))
plt.gcf().set_dpi(150)
Cloud = WordCloud(

background_color="white",
max_words=100,
font_path=fp

).generate_from_frequencies(tfidf.sum())
ax.imshow(Cloud)
ax.axis("off");
#plt.savefig("Wordcloud 2.png")

33

6.2.1 Questions

• What does the sum represent for the count vectoriser?
• What does the sum represent for the TF/IDF vectoriser?

7 Latent Dirchlet Allocation

Tip

I would give this a low priority. It’s a commonly-usedmethod, but on small data
sets it really isn’t much use and I’ve found its answers to be… unclear… even on
large data sets.

Adapted from this post on doing LDA using sklearn. Most other examples use the
gensim library.

Notice change to ngram range
(try 1,1 and 1,2 for other options)
vectorizer = CountVectorizer(ngram_range=(1,2))

7.1 Calculate Topics

vectorizer.fit(corpus)
tcorpus = vectorizer.transform(corpus) # tcorpus for transformed corpus

LDA = LatentDirichletAllocation(n_components=3, random_state=42) # Might want to experiment with n_components too
LDA.fit(tcorpus)

LatentDirichletAllocation(n_components=3, random_state=42)

first_topic = LDA.components_[0]
top_words = first_topic.argsort()[-25:]

for i in top_words:
print(vectorizer.get_feature_names_out()[i])

river thames
modern
area
wharf
flat
access
bathroom
guest
house

34

https://stackabuse.com/python-for-nlp-topic-modeling/

minute
private
kitchen
large
thames
living
view
station
floor
bedroom
apartment
walk
london
river
room
space

for i,topic in enumerate(LDA.components_):
as_markdown(f'Top 10 words for topic #{i}', ', '.join([vectorizer.get_feature_names_out()[i] for i in topic.argsort()[-25:]]))

Top 10 words for topic #0

river thames, modern, area, wharf, flat, access, bathroom, guest, house,
minute, private, kitchen, large, thames, living, view, station, floor, bed-
room, apartment, walk, london, river, room, space

Top 10 words for topic #1

park, fully, modern, private, living, guest, view, double, close, access, area,
flat, thames, bathroom, station, apartment, kitchen, space, minute walk,
room, london, river, bedroom, minute, walk

Top 10 words for topic #2

living, river view, canary wharf, canary, central, wharf, stay, close, bath-
room, guest, kitchen, double, minute, thames, access, station, flat, space,
view, bedroom, apartment, river, walk, london, room

7.2 Maximum Likelihood Topic

topic_values = LDA.transform(tcorpus)
topic_values.shape

(408, 3)

35

pd.options.display.max_colwidth=20
srcdf['Topic'] = topic_values.argmax(axis=1)
srcdf.head()

geometry listing_url name description amenities price description_norm Topic

19 POINT (519474.79... https://www.airb... Townhouse in Ric... 3 Bed House with... [”Bathtub”, ”Sha... 245.0 house garden clo... 1
71 POINT (537104.16... https://www.airb... Rental unit in L... The space... [”Heating”, ”Ele... 60.0 space appartment... 2
713 POINT (530945.88... https://www.airb... Rental unit in G... Newly renovated,... [”Bathtub”, ”Sha... 169.0 newly renovate ... 2
928 POINT (539808.31... https://www.airb... Rental unit in L... Brand new rivers... [”Waterfront”, ”... 191.0 brand riverside ... 1
1397 POINT (538098.29... https://www.airb... Rental unit in L... PLEASE READ OTHE... [”Heating”, ”Ele... 79.0 please read thin... 2

pd.options.display.max_colwidth=75
srcdf[srcdf.Topic==1].description_norm.head(10)

19 house garden close thames river . walk private road river nearby . di...
928 brand riverside apartment greenwich peninsula . perfect explore london ...
1424 mint walk thames river mint tower bridge mint greenwich bus mint walk...
1644 bright spacious chill bedroom cosy apartment level friendly quiet bloc...
3887 fabulous bathshower flat modern development east putney london literal...
3966 large double room river view available large spacious townhouse hampton...
4664 private quiet bright large double room ensuite bathroom . location stu...
4890 bright airy bedroom ground floor apartment quiet street . modernly fu...
5815 perfect claphambattersea modern decor . brand kitchenbathroom minute wa...
6699 room front house overlook balcony road river . bright sunny house view...
Name: description_norm, dtype: object

vectorizer = CountVectorizer(ngram_range=(1,1), stop_words='english', analyzer='word', max_df=0.7, min_df=0.05)
topic_corpus = vectorizer.fit_transform(srcdf[srcdf.Topic==1].description.values) # tcorpus for transformed corpus

topicdf = pd.DataFrame(data=topic_corpus.toarray(),
columns=vectorizer.get_feature_names_out())

f,ax = plt.subplots(1,1,figsize=(8,8))
plt.gcf().set_dpi(150)
Cloud = WordCloud(

background_color="white",
max_words=75).generate_from_frequencies(topicdf.sum())

ax.imshow(Cloud)
ax.axis("off");
plt.savefig('Wordcloud 3.png')

36

8 Word2Vec

Tip

This algorithm works almost like magic. You should play with the configuration
parameters and see how it changes your results.

8.1 Configure

from gensim.models.word2vec import Word2Vec

dims = 100
print(f"You've chosen {dims} dimensions.")

window = 4
print(f"You've chosen a window of size {window}.")

min_v_freq = 0.01 # Don't keep words appearing less than 1% frequency
min_v_count = math.ceil(min_v_freq * srcdf.shape[0])
print(f"With a minimum frequency of {min_v_freq} and {srcdf.shape[0]:,} documents, minimum vocab frequency is {min_v_count:,}.")

You've chosen 100 dimensions.
You've chosen a window of size 4.
With a minimum frequency of 0.01 and 408 documents, minimum vocab frequency is 5.

37

8.2 Train

%%time

corpus = srcdf.description_norm.fillna(' ').values
#corpus_sent = [nltk.sent_tokenize(text) for text in corpus] # <-- with more formal writing this would work well
corpus_sent = [d.replace('.',' ').split(' ') for d in corpus] # <-- deals better with many short sentences though context may end up... weird
model = Word2Vec(sentences=corpus_sent, vector_size=dims, window=window, epochs=200,

min_count=min_v_count, seed=42, workers=1)

#model.save(f"word2vec-d{dims}-w{window}.model") # <-- You can then Word2Vec.load(...) which is useful with large corpora

CPU times: user 4 s, sys: 94.4 ms, total: 4.09 s
Wall time: 4.07 s

8.3 Explore Similarities

This next bit of code only runs if you have calculated the frequencies above in the
Frequencies and Ngrams section.

pd.set_option('display.max_colwidth',150)

df = fcounts[1] # <-- copy out only the unigrams as we haven't trained anything else

n = 14 # number of words
topn = 7 # number of most similar words

selected_words = df[df['Ngram Size 1'] > 5].reset_index().level_0.sample(n, random_state=42).tolist()

words = []
v1 = []
v2 = []
v3 = []
sims = []

for w in selected_words:
try:

vector = model.wv[w] # get numpy vector of a word
#print(f"Word vector for '{w}' starts: {vector[:5]}...")

sim = model.wv.most_similar(w, topn=topn)
#print(f"Similar words to '{w}' include: {sim}.")

words.append(w)
v1.append(vector[0])
v2.append(vector[1])
v3.append(vector[2])
sims.append(", ".join([x[0] for x in sim]))

except KeyError:

38

print(f"Didn't find {w} in model. Can happen with low-frequency terms.")

vecs = pd.DataFrame({
'Term':words,
'V1':v1,
'V2':v2,
'V3':v3,
f'Top {topn} Similar':sims

})

vecs

Term V1 V2 V3 Top 7 Similar

0 complimentary 1.524467 1.134316 0.237703 essentials, mbps, toiletry, excel, workspace, morning, baby
1 equip -1.171649 0.706236 0.676694 equipped, utensil, flatscreen, plan, sofabed, lock, bedlinen
2 shower -0.272218 -2.609626 1.885777 separate, corridor, additional, bathroom, toilet, toiletry, plus
3 smart 1.758183 -0.123735 1.295561 flatscreen, inch, comfy, netflix, kitchen, shared, streaming
4 design 1.657050 1.763350 -1.095689 chic, beautifully, interior, decor, standard, equipped, comfort
5 appliance -0.066985 0.668519 1.304341 essential, necessary, kitchenette, utensil, wellequipped, disposal, cook
6 living 0.795928 -1.091040 0.090184 live, separate, lounge, double, come, modern, bathroom
7 the 0.678621 0.764269 -1.814383 castle, zone, guarantee, cosy, equip, nicely, elephant
8 directly -0.485994 -1.765136 -0.389416 docklands, excel, cathedral, undergroundtube, barrier, direct, canary
9 fridgefreezer -1.023075 -0.408912 -0.379294 cutlery, kettle, toaster, freezer, washer, oven, microwave
10 bathtub -1.153225 -0.845233 1.582382 reception, ensuite, bath, walkin, toilet, corridor, shared
11 train 1.615595 -0.275208 -1.623259 kingston, jubilee, taxi, mudchute, india, airport, transportation
12 palace -2.354299 -1.162588 -0.131212 buckingham, hyde, min, parliament, sloane, houses, stamford
13 shard 0.661091 0.241524 -0.174146 globe, cathedral, shoredich, borough, tower, mudchute, southbank

#print(model.wv.index_to_key) # <-- the full vocabulary that has been trained

8.4 Apply

We’re going to make use of this further next week…

8.4.1 Questions

• What happens when dims is very small (e.g. 25) or very large (e.g. 300)?
• What happens when window is very small (e.g. 2) or very large (e.g. 8)?

39

9 Processing the Full File

Caution

This code can take some time (> 5minutes on aM2Mac) to run, so don’t run this
until you’ve understood what we did before!

You will get a warning about "." looks like a filename, not markup— this looks a
little scary, but is basically suggesting that we have a description that consists only
of a ‘.’ or that looks like some kind of URL (which the parser thinks means you’re
trying to pass it something to download).

%%time
This can take up to 8 minutes on a M2 Mac
gdf['description_norm'] = ''
gdf['description_norm'] = gdf.description.apply(normalise_document, remove_digits=True, special_char_removal=True)

gdf.to_parquet(os.path.join('data','geo',f'{fn.replace(".","-with-nlp.")}'))

Tip

Saving an intermediate file at this point is useful because you’ve done quite
a bit of expensive computation. You could restart-and-run-all and then go out
for the day, but probably easier to just save this output and then, if you need to
restart your analysis at some point in the future, just remember to deserialise
amenities back into a list format.

9.1 Applications

The above is still only the results for the one of the subsets of apartments alone. At
this point, you would probably want to think about how your results might change
if you changed any of the following:

1. Using one of the other data sets that we created, or even the entire data set!
2. Applying the CountVectorizer or TfidfVectorizer before selecting out any of our

‘sub’ data sets.
3. Using the visualisation of information to improve our regex selection process.
4. Reducing, increasing, or constraining (i.e. ngrams=(2,2)) the size of the ngrams

while bearing in mind the impact on processing time and interpretability.
5. Filtering by type of listing or host instead of keywords found in the description

(for instance, what if you applied TF/IDF to the entire data set and then selected
out ‘Whole Properties’ before splitting into those advertised by hosts with only
one listing vs. those with multiple listings?).

6. Linking this back to the geography.

Over the next few weeks we’ll also consider alternative means of visualising the
data!

40

9.2 Resources

There is a lot more information out there, including a whole book and your standard
O’Reilly text.

And some more useful links:

• Pandas String Contains Method
• Using Regular Expressions with Pandas
• Summarising Chapters from Frankenstein using TF/IDF

41

https://www.nltk.org/book/
http://www.datascienceassn.org/sites/default/files/Natural%20Language%20Processing%20with%20Python.pdf
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.str.contains.html
https://kanoki.org/2019/11/12/how-to-use-regex-in-pandas/
https://towardsdatascience.com/using-tf-idf-to-form-descriptive-chapter-summaries-via-keyword-extraction-4e6fd857d190

	Preamble
	Setup
	Illustrative Text Cleaning
	Applying Normalisation
	Revenons à Nos Moutons
	Word Clouds
	Latent Dirchlet Allocation
	Word2Vec
	Processing the Full File

