
Practical 8: Working with Text
The basics of Text Mining and NLP
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A lot of the content here is provided to help you understand what text-cleaning does
and how it generates tokens that can be processed by the various analytical ap-
proaches commonly-used in NLP. The best way to think about this is as a practical
in two parts, with a bonus ‘Part 2’ that you should not expect to complete unless you
probably shouldn’t be taking CASA0013 in the first place:

1. Tasks 1–3: these are largely focussed on the basics: exploring text and using
regular expressions to find and select text.

2. Tasks 4–5: this might seem like a bit of a detour, but it’s intended to show you in
a more tangible way how ‘normalisation’ works when we’re working with text.

The later parts in Part 2 are largely complete and ready to run; however, that doesn’t
mean you should just skip over them and think you’ve grasped what’s happening
and it will be easy to apply in your own analyses. I would not pay as much attention
to LDA topic mining since I don’t think it’s results are that good, but I’ve included
it here as it’s still commonly-used in the Digital Humanities and by Marketing folks.
Word2Vec is much more powerful and forms the basis of the kinds of advances seen
in ChatGPT and other LLMs.

� Connections

Working with text is unquestionably hard. In fact, conceptually this is probaly
the most challenging practical of the term! But data scientists are always deal-
ing with text because so much of the data that we collect (even more so thanks
to the web) is not only text-based (URLs are text!) but, increasingly, unstruc-
tured (social media posts, tags, etc.). So while getting to grips with text is a
challenge, it also uniquely positions you with respect to the skills and knowl-
edge that other graduates are offering to employers.
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1 Setup

Difficulty Level: Low

But this is only because this has been worked out for you. Starting from sctach
in NLP is hard so people try to avoid it as much as possible.

1.1 Required Modules

Note

Notice that the number of modules and functions that we import is steadily
increasing week-on-week, and that for text processing we tend to draw on quite
a wide range of utilies! That said, the three most commonly used are: sklearn,
nltk, and spacy.

Standard libraries we’ve seen before.

import os
import numpy as np
import pandas as pd
import geopandas as gpd
import re
import math
import matplotlib.pyplot as plt

This next is just a small utility function that allows us to output Markdown (like this
cell) instead of plain text:

from IPython.display import display_markdown

def as_markdown(head='', body='Some body text'):
if head != '':

display_markdown(f"##### {head}\n\n>{body}\n", raw=True)
else:

display_markdown(f">{body}\n", raw=True)

as_markdown('Result!', "Here's my output...")

Result!

Here’s my output…
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1.2 Loading Data

� Connections

Because I generally want each practical to stand on its own (unless I’m trying to
make a point), I’ve not moved this to a separate Python file (e.g. utils.py, but
in line with what we covered back in the lectures on Functions and Packages,
this sort of thing is a good candidate for being split out to a separate file to
simplify re-use.

Remember this function from last week? We use it to save downloading files that
we already have stored locally. But notice I’ve made some small changes… what do
these do to help the user?

import os
from requests import get
from urllib.parse import urlparse

def cache_data(src:str, dest:str) -> str:
"""Downloads and caches a remote file locally.

The function sits between the 'read' step of a pandas or geopandas
data frame and downloading the file from a remote location. The idea
is that it will save it locally so that you don't need to remember to
do so yourself. Subsequent re-reads of the file will return instantly
rather than downloading the entire file for a second or n-th itme.

Parameters
----------
src : str

The remote *source* for the file, any valid URL should work.
dest : str

The *destination* location to save the downloaded file.

Returns
-------
str

A string representing the local location of the file.
"""

url = urlparse(src) # We assume that this is some kind of valid URL
fn = os.path.split(url.path)[-1] # Extract the filename
dfn = os.path.join(dest,fn) # Destination filename

# Check if dest+filename does *not* exist --
# that would mean we have to download it! We
# also check for *very* small files that are
# likely to represent an incomplete download.
if not os.path.isfile(dfn) or os.stat(dfn).st_size < 250:
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print(f"{dfn} not found, downloading!")

# Convert the path back into a list (without)
# the filename -- we need to check that directories
# exist first.
path = os.path.split(dest)

# Create any missing directories in dest(ination) path
# -- os.path.join is the reverse of split (as you saw above)
# but it doesn't work with lists... so I had to google how
# to use the 'splat' operator! os.makedirs creates missing
# directories in a path automatically.
if len(path) >= 1 and path[0] != '':

os.makedirs(os.path.join(*path), exist_ok=True)

# Download and write the file
with open(dfn, "wb") as file:

response = get(src)
file.write(response.content)

print("\tDone downloading...")

# What's this doing???
f_size = os.stat(dfn).st_size
print(f"\tSize is {f_size/1024**2:,.0f} MB ({f_size:,} bytes)")

else:
print(f"Found {dfn} locally!")

# And why is it here as well???
f_size = os.stat(dfn).st_size
print(f"\tSize is {f_size/1024**2:,.0f} MB ({f_size:,} bytes)")

return dfn

Tip

For very large non-geographic data sets, remember that you can use_cols (or
columns depending on the file type) to specify a subset of columns to load.

Load the main data set:

ymd = '20240614'
city = 'London'
host = 'https://orca.casa.ucl.ac.uk'
url = f'{host}/~jreades/data/{ymd}-{city}-listings.geoparquet'

gdf = gpd.read_parquet( cache_data(url, os.path.join('data','geo')),
columns=['geometry', 'listing_url', 'name',

'description', 'amenities', 'price'])
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gdf = gdf.to_crs('epsg:27700')

print(f"gdf has {gdf.shape[0]:,} rows and CRS is {gdf.crs.name}.")

Found data/geo/20240614-London-listings.geoparquet locally!
Size is 42 MB (44,000,824 bytes)

gdf has 85,127 rows and CRS is OSGB36 / British National Grid.

Load supporting Geopackages:

ddir = os.path.join('data','geo') # destination directory
spath = 'https://github.com/jreades/fsds/blob/master/data/src/' # source path

boros = gpd.read_file( cache_data(spath+'Boroughs.gpkg?raw=true', ddir) )
water = gpd.read_file( cache_data(spath+'Water.gpkg?raw=true', ddir) )
green = gpd.read_file( cache_data(spath+'Greenspace.gpkg?raw=true', ddir) )

print('Done.')

Found data/geo/Boroughs.gpkg locally!
Size is 1 MB (905,216 bytes)

Found data/geo/Water.gpkg locally!
Size is 0 MB (208,896 bytes)

Found data/geo/Greenspace.gpkg locally!
Size is 1 MB (1,146,880 bytes)

Done.

2 Exploratory Textual Analysis

� Connections

If you plan to work with data post-graduation then you will need to become
comfortable with Regular Expressions (aka. regexes). These are the focus of
the Patterns in Text lecture but they barely even scratch the surface of what
regexes can do. They are hard, but they are powerful.

Tip

In a full text-mining application I would spend a lot more time on this stage:
sampling, looking at descriptions in full, performing my analysis (the rest of
the steps) and then coming back with a deeper understanding of the data to
make further changes to the analysis.

It’s helpful to have a sense of what data look like before trying to do something
with them, but by default pandas truncates quite a lot of output to keep it from
overwhelming the display. For text processing, however, you should probably change
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the amount of preview text provided by pandas using the available options. Note:
there are lots of other options that you can tweak in pandas.

print(f"Default maximum column width: {pd.options.display.max_colwidth}") # What's this currently set to?
pd.options.display.max_colwidth=250 # None = no maximum column width (you probably don't want to leave it at this)
print(f"Now maximum column width set to: {pd.options.display.max_colwidth}")

Default maximum column width: 50
Now maximum column width set to: 250

2.1 The Description Field

Difficulty level: Moderate, because of the questions.

To explore the description field properly you’ll need to filter out any NA/NaN descrip-
tions before sampling the result. Hint: you’ll need to think about negation (~) of a
method output that tells you if a field is NA.

Question

gdf[???].sample(5, random_state=42)[['description']]

Stop

What do you notice about the above? Are they simple text? Are there patterns
of problems? Are there characters that represent things other than words and
simple punctuation?

2.1.1 Questions

• What patterns can you see that might need ‘dealing with’ for text-mining to
work?

• What non-text characters can you see? (Things other than A-Z, a-z, and simple
punctuation!)

2.2 The Amenities Field

Difficulty level: Moderate, because of the questions.

This field presents a subtle issue that might not be obvious here:

gdf.amenities.sample(5, random_state=42)
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17638 ["Free dryer \u2013 In unit", "Hot water kettle", "Shampoo", "Luggage dropoff allowed", "Microwave", "Dining table", "Bed linens", "Hot water", "Iron", "Host greets you", "First aid kit", "Garden view", "Wine glasses", "Outdoor furniture", "Porta...
84107 ["Bathtub", "Clothing storage: closet", "Portable heater", "Microwave", "Hot water", "Host greets you", "First aid kit", "Security cameras on property", "Washer", "Fire extinguisher", "Freezer", "Lock on bedroom door", "Refrigerator", "Room-darke...
53166 ["Hot water", "Iron", "Outdoor dining area", "Lock on bedroom door", "Wifi", "Shampoo", "Luggage dropoff allowed", "Smoke alarm", "Hangers", "Pets allowed", "Essentials", "Long term stays allowed"]
72159 ["Free dryer \u2013 In unit", "Clothing storage: closet", "Hot water kettle", "Shampoo", "Microwave", "Self check-in", "Dining table", "Bed linens", "Hot water", "Iron", "Conditioner", "Wine glasses", "Washer", "Coffee maker: Nespresso", "Inducti...
84441 ["Bathtub", "Clothing storage: closet", "Elevator", "Hot water", "Carbon monoxide alarm", "Central heating", "Paid street parking off premises", "Single oven", "Wifi", "Free washer \u2013 In unit", "Refrigerator", "Smoke alarm", "Kitchen", "Dryer...
Name: amenities, dtype: object

But look what happens now, can you see the issue a little more easily?

gdf.amenities.iloc[0]

'["Heating", "TV with standard cable", "Wifi", "Smoke alarm", "Dryer", "Kitchen", "Washer", "Essentials"]'

2.2.1 Questions

• What’s the implicit format of the Amenities columns?
• How could you represent the data contained in the column?

2.3 Remove NaN Values

Note

I would be wary of doing the below in a ‘proper’ application without doing some
careful research first, but to make our lives easier, we’re going to drop rows
where one of these values is NaN now so it will simplify the steps below. In
reality, I would spend quite a bit more time investigating which values are NaN
and why before simply dropping them.

Anyway, drop all rows where either the description or amenities (or both) are NA:

Question

gdf = gdf.dropna(???)
print(f"Now gdf has {gdf.shape[0]:,} rows.")

You should get that there are 84,266 rows.

3 Using Regular Expressions

� Connections

We’re building on thework done in Practical 7, butmaking use nowof the lecture
on Patterns in Text) to quickly sort through the listings.
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There is a lot that can be done with Regular Expressions to identify relevant records
in textual data and we’re going to use this as a starting point for the rest of the
analysis. I would normally consider the regexes here a ‘first pass’ at the data, but
would look very carefully at the output of the TF/IDF vectorizer, Count vectorizer,
and LDA to see if I could improve my regexes for further cycles of analysis… the main
gain there is that regexes are much faster than using the full NLP (Natural Language
Processing) pipeline on the full data set each time. As an alternative, you could
develop the pipeline using a random subsample of the data and then process the
remaining records sequentially – in this context there is no justification for doing
that, but with a larger corpus it might make sense.

3.1 Luxury Listings

Difficulty level: Hard, because of the regular expression and questions.

I would like you to find listings that might (on the basis of word choice) indicate
‘luxury’ accommodation.

3.1.1 Create the Regular Expression

You should start with variations on ‘luxury’ (i.e. luxurious, luxuriate, …) and work out
a single regular expression that works for variations on this one word. Later, I would
encourage you to come back to this and consider what other words might help to
signal ‘luxury’… perhaps words like ‘stunning’ or ‘prestigious’? Could you add those
to the regex as well?

Hints: this is a toughy, but…

1. All regular expressions work best using the r'...' (which means raw string)
syntax.

2. You need to be able to group terms. Recall, however, that in Python a ‘group’
of the form r'(some text)' refers to matching (some text will be ‘memo-
ized’/remembered), whereas what you need here is a “non-capturing group”
of the positive lookahead type. That’s a Google clue right there, but you’ve
also seen this in the lecture.

In fact, inmy real-world applications youmight even needmore than one group/non-
capturing group in a nested structure.

Question

gdf[
gdf.description.str.contains(r'???', regex=True, flags=re.IGNORECASE) # <-- The regex

].sample(3, random_state=42)[['description']]
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3.1.2 Apply it to Select Data

Assign it to a new data frame called lux:

Question

lux = gdf[gdf.description.str.contains(r'???', regex=True, flags=re.IGNORECASE)].copy()
lux.to_parquet(os.path.join('data','clean','luxury.geopackage'))
print(f"Found {lux.shape[0]:,} records for 'luxury' flats")

You should get that there are 10,367 rows.

3.1.3 Plot the Data

Now we are going to create a more complex plot that will give space to both the
spatial and price distributions using subplot2grid.

help(plt.subplot2grid)

Notice that there are two ways to create the plot specified above. I chose route 1, but
in some ways route 2 (where you specify a gridspec object and then add the axes
might be a bit simpler to work out if you’re starting from scratch.

The critical thing here is to understand how we’er initialising a plot that has 4 rows
and 1 column even though it is only showing 2 plots. What we’re going to do is set
the first plot to span 3 rows so that it takes up 75% of the plot area (3/4), while the
second plot only takes up 25% (1/4). They will appear one above the other, so there’s
only 1 column. Here’s how to read the key parts of subplot2grid:

• nrows – how many rows of plots in the figure.
• ncols – how many columns of plots in the figure.
• row – what row of the figure does this plot start on (0-indexed like a list in
Python).

• col – what column of the figure does this plot start on (0-indexed like a list in
Python).

• rowspan – how many rows of the figure does this plot span (not 0-indexed be-
cause it’s not list-like).

• colspan – how many columns of the figure does this plot span (not 0-indexed
because it’s not list-like).

Every time you call subplot2grid you are initialising a new axis-object into which
you can then draw with your geopackage or pandas plotting methods.

Question

f,ax = plt.subplots(1,1,figsize=(9,6))
ax.remove()

# The first plot
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ax1 = plt.subplot2grid((4, 1), (???), rowspan=???)
boros.plot(edgecolor='red', facecolor='none', linewidth=1, alpha=0.75, ax=ax1)
lux.plot(markersize=2, column='price', cmap='viridis', alpha=0.2, scheme='Fisher_Jenks_Sampled', ax=ax1)

ax1.set_xlim([500000, 565000])
ax1.set_ylim([165000, 195000]);

# The second plot
ax2 = plt.subplot2grid((???), (???), rowspan=1)
lux.price.plot.hist(bins=250, ax=ax2)

plt.suptitle("Listings Advertising Luxury") # <-- How does this differ from title? Change it and see!
plt.tight_layout() # <-- Try creating the plot *without* this to see what it changes
plt.show()

Your result should look similar to:

Figure 1: ‘Luxury’ listings in London
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Question

• What does suptitle do and how is it different from title? Could you use this
as part of your plot-making process?

• What does tight_layout do?
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3.2 Budget Listings

Difficulty level: Easy, because you’ve worked out the hard bits already.

3.2.1 Create the Regular Expression

What words can you think of that might help you to spot affordable and budget
accommodation? Start with just a couple of words and then I would encourage you
to consider what other words might help to signal ‘affordability’… perhaps words
like ‘cosy’ or ‘charming’ and then think about how you could you add those to the
regex?

Hints: this just builds on what you did above with one exception:

1. I’d try adding word boundary markers to the regex (\b) where appropriate…

Question

gdf[
gdf.description.str.contains(???, regex=True, flags=re.IGNORECASE)

].sample(5, random_state=42)[['description']]

3.2.2 Apply it to Select Data

Question

aff = gdf[gdf.description.str.contains(???, regex=True, flags=re.IGNORECASE)].copy()
aff.to_parquet(os.path.join('data','clean','affordable.geopackage'))
print(f"There are {aff.shape[0]:,} rows flagged as 'affordable'.")

You should get that there are 8,937 rows.

3.2.3 Plot the Data

f,ax = plt.subplots(1,1,figsize=(8,6))
ax.remove()

# The first plot
ax1 = plt.subplot2grid((4, 1), (0, 0), rowspan=3)
boros.plot(edgecolor='red', facecolor='none', linewidth=1, alpha=0.75, ax=ax1)
aff.plot(markersize=2, column='price', cmap='viridis', alpha=0.2, scheme='Fisher_Jenks_Sampled', ax=ax1)

ax1.set_xlim([500000, 565000])
ax1.set_ylim([165000, 195000]);
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# The second plot
ax2 = plt.subplot2grid((4, 1), (3, 0), rowspan=1)
aff.price.plot.hist(bins=100, ax=ax2)

plt.suptitle("Listings Advertising Affordability")
plt.tight_layout()
#plt.savefig("Affordable_Listings.png", dpi=150)
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3.2.4 Questions

• Do you think that this is a good way to select affordable options?
• Do you understand what dpi means and how savefig works?
• Copy the code from above but modify it to constrain the histogram on a more
limited distribution by filtering out the outliers before drawing the plot. I would
copy the cell above to one just below here so that you keep a working copy
available and can undo any changes that break things.

3.3 Near Bluespace

Difficulty level: Medium, because you’re still learning about regexes.
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Now see if you can work out a regular expression to find accommodation that empha-
sises accessibility to the Thames and other ‘blue spaces’ as part of the description?
One thing you’ll need to tackle is that some listings seem to say something about
Thameslink and you wouldn’t want those be returned as part of a regex looking for
rivers. So by way of a hint:

• You probably need to think about the Thames, rivers, and water.
• These will probably be followed by a qualifier like a ‘view’ (e.g. Thames-view)
or a front (e.g. water-front).

• But you need to rule out things like “close the Thameslink station…”

3.3.1 Create the regular Expression

Question

gdf[
gdf.description.str.contains(???, regex=???, flags=???)

].sample(5, random_state=42)[['description']]

3.3.2 Apply it to the Select Data

Question

bluesp = gdf[
(gdf.description.str.contains(???, regex=True, flags=re.IGNORECASE)) |
(gdf.description.str.contains(???, regex=True, flags=re.IGNORECASE))

].copy()
bluesp.to_parquet(os.path.join('data','clean','bluespace.geopackage'))
print(f"Found {bluesp.shape[0]:,} rows.")

You should get that there are 408 rows.

3.3.3 Plot the Data

f,ax = plt.subplots(1,1,figsize=(8,6))
ax.remove()

# The first plot
ax1 = plt.subplot2grid((4, 1), (0, 0), rowspan=3)
water.plot(edgecolor='none', facecolor=(.25, .25, .7, .25), ax=ax1)
boros.plot(edgecolor='red', facecolor='none', linewidth=1, alpha=0.75, ax=ax1)
bluesp.plot(markersize=2, column='price', cmap='viridis', alpha=0.5, scheme='Fisher_Jenks_Sampled', ax=ax1)

ax1.set_xlim([500000, 565000])
ax1.set_ylim([165000, 195000]);

# The second plot
ax2 = plt.subplot2grid((4, 1), (3, 0), rowspan=1)
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bluesp.price.plot.hist(bins=100, ax=ax2)

plt.suptitle("Bluespace Listings")
plt.tight_layout()
plt.show()

500000 510000 520000 530000 540000 550000 560000
165000

170000

175000

180000

185000

190000

195000

0 250 500 750 1000 1250 1500 1750 2000
0

20

40

Fr
eq

ue
nc

y

Bluespace Listings

3.3.4 Questions

• How else might you select listings with a view of the Thames or other blues-
paces?

3.4 Resources

There is a lot more information out there, including a whole book and your standard
O’Reilly text.

And some more useful links:

• Pandas String Contains Method
• Using Regular Expressions with Pandas
• Summarising Chapters from Frankenstein using TF/IDF
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