
Practical 9: Selecting Data
Selecting & Linking Data

Table of contents

1 Preamble 1

2 Selecting Data 3

3 Non-Spatial Joins 12

4 Spatial Joins 17

5 Worked Example 21

Important

This practical focusses on data linkage! You will have seen quite a bit of this of
these across the preceding three to four weeks, but they were picked up in an
ad-hoc way, here we try to systematise things a bit.

� Connections

We’re going to look at how data can be joined (linked) to other data using
a range of techniques: pure Python (spatial and non-spatial) and SQL (non-
spatial only).

1 Preamble

ymd = '20240614'
city = 'London'
host = 'https://orca.casa.ucl.ac.uk'
url = f'{host}/~jreades/data/{ymd}-{city}-listings.geoparquet'

import os
import numpy as np
import pandas as pd
import geopandas as gpd
import seaborn as sns

1

import matplotlib.cm as cm
import matplotlib.pyplot as plt

import os
from requests import get
from urllib.parse import urlparse
from functools import wraps

def check_cache(f):
@wraps(f)
def wrapper(src, dst, min_size=100):

url = urlparse(src) # We assume that this is some kind of valid URL
fn = os.path.split(url.path)[-1] # Extract the filename
dsn = os.path.join(dst,fn) # Destination filename
if os.path.isfile(dsn) and os.path.getsize(dsn) > min_size:

print(f"+ {dsn} found locally!")
return(dsn)

else:
print(f"+ {dsn} not found, downloading!")
return(f(src, dsn))

return wrapper

@check_cache
def cache_data(src:str, dst:str) -> str:

"""Downloads a remote file.

The function sits between the 'read' step of a pandas or geopandas
data frame and downloading the file from a remote location. The idea
is that it will save it locally so that you don't need to remember to
do so yourself. Subsequent re-reads of the file will return instantly
rather than downloading the entire file for a second or n-th itme.

Parameters

src : str

The remote *source* for the file, any valid URL should work.
dst : str

The *destination* location to save the downloaded file.

Returns

str

A string representing the local location of the file.
"""

Convert the path back into a list (without)
the filename -- we need to check that directories
exist first.
path = os.path.split(dst)[0]
print(f"Path: {path}")

2

Create any missing directories in dest(ination) path
-- os.path.join is the reverse of split (as you saw above)
but it doesn't work with lists... so I had to google how
to use the 'splat' operator! os.makedirs creates missing
directories in a path automatically.
if path != '':

os.makedirs(path, exist_ok=True)

Download and write the file
with open(dst, "wb") as file:

response = get(src)
file.write(response.content)

print(' + Done downloading...')

return dst

ddir = os.path.join('data','geo') # destination directory
pqt = cache_data(url, ddir)

+ data/geo/20240614-London-listings.geoparquet found locally!

2 Selecting Data

2.1 In Pandas

2.1.1 A first query (Recap)

%%time

pd.read_parquet(f'{pqt}').head(3)

CPU times: user 151 ms, sys: 25.7 ms, total: 177 ms
Wall time: 141 ms

id listing_url last_scraped name description host_id host_name host_since host_location host_is_superhost ... price minimum_nights maximum_nights availability_365 number_of_reviews first_review last_review review_scores_rating reviews_per_month geometry

0 92644 https://www.airbnb.com/rooms/92644 2023-09-06 Rental unit in Earlsfield · �4.57 · 1 bedroom ... The space
Hi everyone! I have 2 ro... 498201 Dee Dee 2011-04-10 London, United Kingdom False ... 42.0 2 730 217 216.0 2011-06-21 2022-10-29 4.57 1.45 b'\x01\x01\x00\x00\x00\xeax\xcc@e\xfc\xc7\xbf\...
1 93015 https://www.airbnb.com/rooms/93015 2023-09-06 Rental unit in Hammersmith · �4.82 · 2 bedroom... Gorgeous 2 bed ground floor apartment with per... 499704 Sarah 2011-04-11 London, United Kingdom False ... 175.0 5 240 40 38.0 2012-02-01 2022-09-30 4.82 0.27 b'\x01\x01\x00\x00\x00\r\xabx#\xf3\xc8\xcb\xbf...
2 13913 https://www.airbnb.com/rooms/13913 2023-09-06 Rental unit in Islington · �4.80 · 1 bedroom ·... My bright double bedroom with a large window h... 54730 Alina 2009-11-16 London, United Kingdom False ... 79.0 1 29 360 41.0 2010-08-18 2022-12-11 4.80 0.26 b'\x01\x01\x00\x00\x00\xeeZB>\xe8\xd9\xbc\xbf\...

This should (I hope) be trivial to read now: we are loading a parquet file using pandas
and taking advantage of Python’s ‘chaining’ functionality (<object>.<method>().<method>()...)
to return the first three rows using head. It is worth noticing that we’re not even
bothering to save the result of this command to a data frame (thus the lack of a df
= in the code) and We’re doing this here solely so that you can compare pandas and
SQL/DuckDB syntax across each of the following steps.

3

2.1.2 Choosing some columns (Recap)

To load a columnar subset of the data we have two options:

1. Load all the data and then subset (which always happens with CSV files but is
optional with other formats)

2. Load only the columns we care about (which is possible with parquet files)

And in code these are:

Load then filter

%%time

pd.read_parquet(f'{pqt}')[['listing_url', 'price', 'number_of_reviews', 'property_type', 'host_name']].head(5)

CPU times: user 168 ms, sys: 56.4 ms, total: 224 ms
Wall time: 184 ms

listing_url price number_of_reviews property_type host_name

0 https://www.airbnb.com/rooms/92644 42.0 216.0 Private room in rental unit Dee Dee
1 https://www.airbnb.com/rooms/93015 175.0 38.0 Entire rental unit Sarah
2 https://www.airbnb.com/rooms/13913 79.0 41.0 Private room in rental unit Alina
3 https://www.airbnb.com/rooms/15400 150.0 94.0 Entire rental unit Philippa
4 https://www.airbnb.com/rooms/93734 46.0 180.0 Private room in condo William

Filter then load

%%time

pd.read_parquet(f'{pqt}', columns=['listing_url', 'price', 'number_of_reviews', 'property_type', 'host_name']).head(5)

CPU times: user 15.3 ms, sys: 1.77 ms, total: 17.1 ms
Wall time: 14.8 ms

listing_url price number_of_reviews property_type host_name

0 https://www.airbnb.com/rooms/92644 42.0 216.0 Private room in rental unit Dee Dee
1 https://www.airbnb.com/rooms/93015 175.0 38.0 Entire rental unit Sarah
2 https://www.airbnb.com/rooms/13913 79.0 41.0 Private room in rental unit Alina
3 https://www.airbnb.com/rooms/15400 150.0 94.0 Entire rental unit Philippa
4 https://www.airbnb.com/rooms/93734 46.0 180.0 Private room in condo William

Notice the difference in the time needed to complete the operation!!!

2.1.3 Adding a constraint (Recap)

4

%%time

df = pd.read_parquet(f'{pqt}', columns=['listing_url', 'price', 'number_of_reviews', 'property_type', 'host_name'])
df[(df.price < 250) & (df.number_of_reviews > 0) & (df.property_type=='Entire home/apt')].head(5)

CPU times: user 15 ms, sys: 763 μs, total: 15.8 ms
Wall time: 13.7 ms

listing_url price number_of_reviews property_type host_name

18922 https://www.airbnb.com/rooms/20296839 96.0 7.0 Entire home/apt Lira
18975 https://www.airbnb.com/rooms/20349067 99.0 1.0 Entire home/apt M
22319 https://www.airbnb.com/rooms/22959348 100.0 3.0 Entire home/apt Robert
38944 https://www.airbnb.com/rooms/42969992 173.0 1.0 Entire home/apt Duda
52418 https://www.airbnb.com/rooms/649784743352942906 91.0 9.0 Entire home/apt Travelnest

For improved legibility you can also write this as:

df = pd.read_parquet(f'{pqt}', columns=['listing_url', 'price', 'number_of_reviews', 'last_review', 'host_name'])
df[

(df.price < 250) &
(df.number_of_reviews > 0) &
(df.property_type=='Entire home/apt')

].head(5)

Notice here that we are using three conditions to filter the data as well as a column
filter on loading to minimise the amount of data loaded into memory. Applying the
filters simultaneously will also make it easy to see what you’ve done (you aren’t
applying each one separately) and to adjust the overall cleaning process.

This filter is fairly straightforward, but things get more complicated when you want
to aggregate the return…

2.1.4 Aggregating the return

There is a lot to unpack here, and notice that it takes three steps to achieve our goal
of selecting, grouping, aggregating, sorting, and printing out the ten most frequent
combinations of room and property type.

%%time

df = pd.read_parquet(f'{pqt}', columns=['property_type','room_type','number_of_reviews','price'])
df = df[

(df.price < 1050) &
(df.number_of_reviews > 0)

]
df.groupby(

by=['room_type','property_type'],
observed=True

5

).agg(
freq = ("property_type", "count"),
median_price = ("price", "median"),

).reset_index().sort_values(
by=['freq','room_type','property_type'], ascending=[False,True,True]

).head(10)

CPU times: user 9.46 ms, sys: 0 ns, total: 9.46 ms
Wall time: 8.56 ms

room_type property_type freq median_price

18 Entire home/apt Entire rental unit 24662 136.0
68 Private room Private room in rental unit 9763 52.0
59 Private room Private room in home 7800 49.0
10 Entire home/apt Entire condo 7542 156.0
14 Entire home/apt Entire home 5243 200.0
52 Private room Private room in condo 2883 67.0
19 Entire home/apt Entire serviced apartment 1565 200.0
72 Private room Private room in townhouse 1205 55.0
20 Entire home/apt Entire townhouse 967 235.0
45 Private room Private room in bed and breakfast 412 78.0

Hopefully the first two steps are fairly clear, so let’s focus on the final one:

Group By
This is a reasonably intelligible step in which we group the data loaded by room and
property:

dfg = df.groupby(
by=['room_type','property_type'],
observed=True

)
dfg

The order here matters: groupby(by=[<A>,]) does not return the same result as
groupby(by=[,<A>]). Try it:

df.groupby(
by=['property_type','room_type'],
observed=True

)

The other thing to note here is the observed=True. This is a nice bit of additional
functionality that, if you set it to False will return a number for all possible combi-
nations, inserting a zero if that combintaion is not observed in the data.

6

Agg
The agg step aggregates the data specified in the functions:

dfg.agg(
freq = ("property_type", "count"),
median_price = ("price", "median"),

)

Pandas offers a lot of different ways to do this, but the above approach is perhaps
the most flexible since we are telling Pandas to apply the count function to the
property_type field and assign it to a column called freq, and to apply the median
function to the price field and assign that to a column called median_price.

‘Degroup’
In order to work with the aggregated data you will almost always want to convert
your GroupedDataFrame back to a regular DataFrame and that means resetting the
index reset_index() – this is just one of those things to learn about grouped data
in Pandas.

Sort
Finally, to sort the data (which is usually what you want) you need to sort_values,
where by specifies the fields you want to sort on and ascending is a matching
(optional) list that specifies the sort order for each sort column. If you just want
to sort everything in ascending order then you don’t need to specify the ascending
values, and if you wanted to sort everything in descending order then it’s just
ascending=False.

2.2 In SQL

That last example may have left you despairing of every being able to se-
lect/filter/aggregate/derive your data, but there is another way that is often
far simpler if you are: a) willing to learn a different language, and b) willing to work
with data in different formats. And that’s all thanks to Parquet and DuckDB.

2.2.1 Parquet and DuckDB

One of the recent technical revolutions that has fundamentally reshaped my work-
flow is the combination of parquet files and in-memory databases. Parquet and
Apache Arrow are closely related but, in short, when you want to save large data sets
in an easy-to-access format then Parquet should be your default choice. DuckDB
gives you a way to treat Parquet files as a database table and run queries against it
using standard SQL. You can install DuckDB on the command-line, but you can also
query it from within Python using the appropriate module.

7

https://stackoverflow.com/a/56481636
https://duckdb.org/#quickinstall

2.2.2 A first query

Let’s see a quick demonstration:

%%time

import duckdb as db

query = f'''
SELECT *
FROM read_parquet('{pqt}')
LIMIT 3;
'''

db.sql(query).to_df()

CPU times: user 55.3 ms, sys: 8.14 ms, total: 63.5 ms
Wall time: 41 ms

id listing_url last_scraped name description host_id host_name host_since host_location host_is_superhost ... price minimum_nights maximum_nights availability_365 number_of_reviews first_review last_review review_scores_rating reviews_per_month geometry

0 92644 https://www.airbnb.com/rooms/92644 2023-09-06 Rental unit in Earlsfield · �4.57 · 1 bedroom ... The space
Hi everyone! I have 2 ro... 498201 Dee Dee 2011-04-10 London, United Kingdom False ... 42.0 2 730 217 216.0 2011-06-21 2022-10-29 4.57 1.45 [1, 1, 0, 0, 0, 234, 120, 204, 64, 101, 252, 1...
1 93015 https://www.airbnb.com/rooms/93015 2023-09-06 Rental unit in Hammersmith · �4.82 · 2 bedroom... Gorgeous 2 bed ground floor apartment with per... 499704 Sarah 2011-04-11 London, United Kingdom False ... 175.0 5 240 40 38.0 2012-02-01 2022-09-30 4.82 0.27 [1, 1, 0, 0, 0, 13, 171, 120, 35, 243, 200, 20...
2 13913 https://www.airbnb.com/rooms/13913 2023-09-06 Rental unit in Islington · �4.80 · 1 bedroom ·... My bright double bedroom with a large window h... 54730 Alina 2009-11-16 London, United Kingdom False ... 79.0 1 29 360 41.0 2010-08-18 2022-12-11 4.80 0.26 [1, 1, 0, 0, 0, 238, 90, 66, 62, 232, 217, 188...

And now let’s unpack this:

1. We import the duckdb library as db.
2. We set up a SQL query using a multi-line f-string
3. We use DuckDb to execute the query and return a pandas dataframe (df)

What’s particularly elegant here (and quite different from trying to talk to a Postres
or MySQL database) is that there’s no connect-execute-collect pattern; we just build
the query and execute it!

2.2.3 Deciphering SQL

I do declare…

Now let’s take a look at the SQL query… SQL is what’s called a declarative lan-
guage, meaning that it is about the logic we want the program to follow rather
than the ‘flow’ of execution. Python supports some declarative elements but
is more commonly seen as an imperative language supporting procedural or
functional approaches. This is a long way of saying: SQL won’t look like Python
even though we’re executing SQL from within Python.

So our query (with added line numbers for clarity) looked liked this:

8

https://en.wikipedia.org/wiki/Declarative_programming
https://en.wikipedia.org/wiki/Declarative_programming

1 SELECT *
2 FROM read_parquet('{pqt}')
3 LIMIT 3

Line-by-line this means:

1. Select all columns (SELECT <* == everything>)
2. From the parquet file (FROM <table location>)
3. Limit the return to 3 rows (LIMIT <row count>)

Let’s look at some variations…

2.2.4 Choosing some columns

%%time

query = f'''
SELECT listing_url, price, number_of_reviews, last_review, host_name
FROM read_parquet('{pqt}')
LIMIT 5;
'''

db.sql(query).to_df()

CPU times: user 2.43 ms, sys: 1.87 ms, total: 4.3 ms
Wall time: 4.76 ms

listing_url price number_of_reviews last_review host_name

0 https://www.airbnb.com/rooms/92644 42.0 216.0 2022-10-29 Dee Dee
1 https://www.airbnb.com/rooms/93015 175.0 38.0 2022-09-30 Sarah
2 https://www.airbnb.com/rooms/13913 79.0 41.0 2022-12-11 Alina
3 https://www.airbnb.com/rooms/15400 150.0 94.0 2023-05-01 Philippa
4 https://www.airbnb.com/rooms/93734 46.0 180.0 2023-09-02 William

1 SELECT listing_url, price, number_of_reviews, last_review, host_name
2 FROM read_parquet('{pqt}')
3 LIMIT 5;

It should be fairly easy to see how the query has changed from last time, but line-
by-line this means:

1. Select a set of columns from the table in the order specified (SELECT <column
1>, <column 30>, <column 5>...)

2. From the parquet file (FROM <table location>)
3. Limit the return to 5 rows (LIMIT <row count>)

9

2.2.5 Adding a constraint

%%time

query = f'''
SELECT listing_url, price, number_of_reviews, last_review, host_name
FROM read_parquet('{pqt}')
WHERE price < 250
AND number_of_reviews > 0
AND property_type='Entire home/apt'
LIMIT 5;
'''

db.sql(query).to_df()

CPU times: user 30.7 ms, sys: 134 μs, total: 30.8 ms
Wall time: 25.3 ms

listing_url price number_of_reviews last_review host_name

0 https://www.airbnb.com/rooms/20296839 96.0 7.0 2017-10-01 Lira
1 https://www.airbnb.com/rooms/20349067 99.0 1.0 2017-11-12 M
2 https://www.airbnb.com/rooms/22959348 100.0 3.0 2018-02-04 Robert
3 https://www.airbnb.com/rooms/42969992 173.0 1.0 2021-10-24 Duda
4 https://www.airbnb.com/rooms/649784743352942906 91.0 9.0 2023-03-22 Travelnest

In this query we’ve added three constraints using a WHERE, which is asking DuckDB to
find all of the rows where the following things are true:

4. The price must be less than ($)250/night
5. The number_of_reviews must be more than 0
6. The property_type must be Entire home/apt

2.2.6 Aggregating the return

So far, we’ve seen a fewways (and hopefully enough to get you started) to select data,
but databases also ‘excel’ at aggregating data in various ways. We aren’t going to
get into things like windowing functions or stored procedures here, but even simple
aggregates done in DuckDB can vastly improve on the performance of pandas.

Tip

When you aggregate data you need to retrieve every column in the SELECT por-
tion that you GROUP BY in the WHERE portion of the query. This will make sense
when you see the examples below… (and should also make sense based on the
Pandas equivalent above)

10

%%time

query = f'''
SELECT property_type, room_type, COUNT(*) AS frequency, MEDIAN(price)
FROM read_parquet('{pqt}')
WHERE price < 1000
AND number_of_reviews > 0
GROUP BY room_type, property_type
ORDER BY frequency DESC, room_type, property_type
LIMIT 10;
'''

db.sql(query).to_df()

CPU times: user 26.1 ms, sys: 0 ns, total: 26.1 ms
Wall time: 18.8 ms

property_type room_type frequency median(price)

0 Entire rental unit Entire home/apt 24634 136.0
1 Private room in rental unit Private room 9754 52.0
2 Private room in home Private room 7797 49.0
3 Entire condo Entire home/apt 7532 155.0
4 Entire home Entire home/apt 5228 200.0
5 Private room in condo Private room 2880 67.0
6 Entire serviced apartment Entire home/apt 1565 200.0
7 Private room in townhouse Private room 1204 55.0
8 Entire townhouse Entire home/apt 964 234.5
9 Private room in bed and breakfast Private room 412 78.0

There are quite a few changes to the query here so it’s worth reviewing them in more
detail:

1 SELECT property_type, room_type, COUNT(*) AS frequency, MEDIAN(price)
2 FROM read_parquet('{pqt}')
3 WHERE price < 1000
4 AND number_of_reviews > 0
5 GROUP BY room_type, property_type
6 ORDER BY frequency DESC, room_type, property_type
7 LIMIT 10;

Key things to note:

1. We have two new aggregate functions:

• COUNT(*) returns a count of the number of rows in each group specified
in the GROUP BY clause.

• MEDIAN(price) returns, unsurprisingly, the median value of the price col-
umn for each group specified in the GROUP BY clause.

• Note also the AS frequency which ‘renames’ the column returned by the
query; it’s the same concept as the import x as y in Python.

11

2. GROUP BY is where the aggregation happens, and here we’re asking DuckDB to
take all of the rows selected (WHERE price < 1000 AND number_of_reviews >
0) and group them using the room_type and property_type fields.

3. ORDER BY orders the returned records by the columns we specify, and they can
be either ASCending (the default) or DESCending (descending).

What you should also be noting here is that:

• This query returns very quickly compared to the pandas equivalent.
• We have been able to express our selection, grouping, and organising criteria
very succinctly.

In terms of both speed and intelligibility, there can be quite substantial advantages
to moving some of your workflow into a database or a database-like format such as
Parquet and then querying that from Python. Databases are designed for the kind
of application that Pandas struggles with, and if you get to windowing functions and
stored procedures you’ll see how there are situations where something is far easier
to express in Python/Pandas than in SQL.

So the trick here is to recognise when you are facing a problem that: a) will bene-
fit from being expressed/tackled in a different language; and b) won’t create undue
overhead on your technology ‘stack’. In working with environmental and built envi-
ronment data I was able to cut the processing time by 80% when I moved the bulk
of the data linkage work from Pandas into Parquet+DuckDB. But, by the same token,
what’s the point of using Postgres and managing a spatial database to perform a
single step in a much longer workflow unless the performance considerations are so
massive they outweigh any other issue.

3 Non-Spatial Joins

We’re going to look at joining data by attributes first and then look at spatial joins
so that you get a sense of how they behave and differ.

For non-spatial joins we only need two data sets relating to MSOAs:

msoa_names_url = 'https://houseofcommonslibrary.github.io/msoanames/MSOA-Names-1.20.csv'
msoa_popst_url = 'https://orca.casa.ucl.ac.uk/~jreades/data/sapemsoaquinaryagetablefinal.xlsx'

msoa_df = pd.read_excel(msoa_popst_url, sheet_name="Mid-2022 MSOA 2021", header=3)
msoa_nms = pd.read_csv(cache_data(msoa_names_url, 'data'))

For DuckDB
if not os.path.exists('data/MSOA_population_estimates.parquet'):

msoa_df.to_parquet('data/MSOA_population_estimates.parquet')

print(f"msoa_df has {msoa_df.shape[0]:,} rows and {msoa_df.shape[1]:,} columns.")
print(f"msoa_nms has {msoa_nms.shape[0]:,} rows and {msoa_nms.shape[1]:,} columns.")

+ data/MSOA-Names-1.20.csv found locally!
msoa_df has 7,264 rows and 43 columns.
msoa_nms has 7,201 rows and 6 columns.

12

The preferred solution

To keep it simple: you should assume that non-spatial joins are always going
to be faster than spatial ones, even in a performant spatial database. Asking if
one number is less than another, or if a piece of text is found in another piece
of text, ismuch simpler than asking if one object falls within the boundaries of
another. Spatial databases are fast and very cool, but if you can express your
problem non-spatially it will be faster to solve it that way too.

3.1 In Pandas

Pandas distinguishes between several types of what SQL would call a ‘join’: the pro-
cess of linking two data sets. Depending on what you want to do, this will fall into
one of the merge, join, concatenate, or compare functions:

• concat simply appends one data frame to another and won’t be discussed fur-
ther, but keep in mind that you can concatenate horizontally and vertically
(across and down), and that having named indexes can cause consternation.
You would find it most useful for appending columns to a data set (appending
rows should be approached differently) or extending a data set for year 𝑛 with
data from year 𝑛 + 1…

• merge is what we normally want when we want to do something similar to a SQL
join. You should refer back to the lecture for the differences between ‘one-to-
one’, ‘one-to-many’, and ‘many-to-many’. Note too that merging is a function
of the pandas library and not a method of a data frame.

3.1.1 Joining by attribute

So in our case, to join the two MSOA data sets we’re going to need to match the MSOA
codes which have (slightly) different names in the two datasets:

%%time

rs = pd.merge(msoa_df, msoa_nms[['msoa11cd','msoa11hclnm','Laname']], left_on='MSOA 2021 Code', right_on='msoa11cd', how='left')
print(f"Result set has {rs.shape[0]:,} rows and {rs.shape[1]:,} columns.")
rs.head(3)

Result set has 7,264 rows and 46 columns.
CPU times: user 3 ms, sys: 0 ns, total: 3 ms
Wall time: 2.84 ms

LAD 2021 Code LAD 2021 Name MSOA 2021 Code MSOA 2021 Name Total F0 to 4 F5 to 9 F10 to 14 F15 to 19 F20 to 24 ... M60 to 64 M65 to 69 M70 to 74 M75 to 79 M80 to 84 M85 to 89 M90 and over msoa11cd msoa11hclnm Laname

0 E06000001 Hartlepool E02002483 Hartlepool 001 10323 265 296 356 302 238 ... 281 254 210 180 93 82 28 E02002483 Clavering Hartlepool
1 E06000001 Hartlepool E02002484 Hartlepool 002 10460 325 349 295 340 283 ... 363 276 248 175 86 49 28 E02002484 Headland & West View Hartlepool
2 E06000001 Hartlepool E02002485 Hartlepool 003 8040 238 287 295 262 225 ... 272 198 159 143 61 31 12 E02002485 Jesmond Hartlepool

But wait! There’s an issue lurking in the data!

13

https://pandas.pydata.org/docs/user_guide/merging.html

print(f"There are {rs.msoa11hclnm.isna().sum()} missing MSOA Names!")

There are 184 missing MSOA Names!

Can you work out why this has happened? There is a clue in the column names!

There’s no way to solve this problem except by changing the code to use this URL
instead for the MSOA Names.

We can also try to constrain the result set to one LA thanks to data in the MSOA
Names database:

%%time

la_nm = 'Waltham Forest'
sdf = msoa_nms[msoa_nms.Laname==la_nm][['msoa11cd','msoa11hclnm','Laname']].copy()

rs = pd.merge(msoa_df, sdf, left_on='MSOA 2021 Code', right_on='msoa11cd', how='inner')
print(f"Result set has {rs.shape[0]:,} rows and {rs.shape[1]:,} columns.")
rs.head(3)

Result set has 28 rows and 46 columns.
CPU times: user 2.23 ms, sys: 18 μs, total: 2.25 ms
Wall time: 2.15 ms

LAD 2021 Code LAD 2021 Name MSOA 2021 Code MSOA 2021 Name Total F0 to 4 F5 to 9 F10 to 14 F15 to 19 F20 to 24 ... M60 to 64 M65 to 69 M70 to 74 M75 to 79 M80 to 84 M85 to 89 M90 and over msoa11cd msoa11hclnm Laname

0 E09000031 Waltham Forest E02000895 Waltham Forest 001 8363 208 233 250 228 215 ... 242 209 153 194 137 93 45 E02000895 Chingford Green West Waltham Forest
1 E09000031 Waltham Forest E02000896 Waltham Forest 002 9322 256 278 264 230 241 ... 257 218 216 190 111 111 54 E02000896 Chingford Green East Waltham Forest
2 E09000031 Waltham Forest E02000897 Waltham Forest 003 8438 233 262 276 212 209 ... 205 162 136 98 104 87 24 E02000897 Friday Hill Waltham Forest

Without the how=inner, the result set would still have all of the rows but some of the
columns would be nearly completely empty.

3.2 In SQL

SQL-based joins use very similar keywords (since Pandas is copying SQL), but how
we put together the query is quite different.

3.2.1 Joining by attribute

%%time

query = f'''
SELECT *
FROM

read_parquet('data/MSOA_population_estimates.parquet') as n

14

https://houseofcommonslibrary.github.io/msoanames/MSOA-Names-Latest2.csv
https://houseofcommonslibrary.github.io/msoanames/MSOA-Names-Latest2.csv

LEFT JOIN
read_csv('{cache_data(msoa_names_url, 'data')}', header=true) as m

ON
n."MSOA 2021 Code"=m.msoa11cd;

'''

db.sql(query).to_df().head(3)

+ data/MSOA-Names-1.20.csv found locally!
CPU times: user 40.1 ms, sys: 997 μs, total: 41.1 ms
Wall time: 36.9 ms

LAD 2021 Code LAD 2021 Name MSOA 2021 Code MSOA 2021 Name Total F0 to 4 F5 to 9 F10 to 14 F15 to 19 F20 to 24 ... M75 to 79 M80 to 84 M85 to 89 M90 and over msoa11cd msoa11nm msoa11nmw msoa11hclnm msoa11hclnmw Laname

0 E06000001 Hartlepool E02002483 Hartlepool 001 10323 265 296 356 302 238 ... 180 93 82 28 E02002483 Hartlepool 001 Hartlepool 001 Clavering None Hartlepool
1 E06000001 Hartlepool E02002484 Hartlepool 002 10460 325 349 295 340 283 ... 175 86 49 28 E02002484 Hartlepool 002 Hartlepool 002 Headland & West View None Hartlepool
2 E06000001 Hartlepool E02002485 Hartlepool 003 8040 238 287 295 262 225 ... 143 61 31 12 E02002485 Hartlepool 003 Hartlepool 003 Jesmond None Hartlepool

Slower???

Without the data caching function, the query above may appear slower than
the Pandas one but if you look at the timing information you’ll see that the
actual time spent processing the data was less. How can that be? Notice that
above we’re reading the CSV file from the House of Commons library as part
of the join, so most of that delay is spent waiting for the CSV file to download!
Another reason is that the files aren’t being loaded into memory first, but are
being read: on small files this allows pandas to outperform DuckDB, but as the
file size grows the performance profile will change radically.
Anyway, the download penalty is why I prefer to download a file once and
save it locally rather than downloading the same file again and again. Plus
it’s friendlier (and cheaper!) to the person or organisation providing the data
to you.

Let’s take a look at the SQL:

1 SELECT *
2 FROM
3 read_parquet('data/MSOA_population_estimates.parquet') as n
4 LEFT JOIN
5 read_csv(msoa_names_url, header=true) as m
6 ON
7 n."MSOA 2021 Code"=m.msoa11cd;

Line-by-line:

1. SELECT every column (this is the *, change this if you want to only pull a subset
of columns)

2. FROM the following tables (it doesn’t really matter if the tables are on this line
or the next for legibility)

15

3. <table 1 from parquet> as n (we now refer to the data from this table using
the prefix n.; e.g. n.Total)

4. LEFT JOIN is the SQL way of saying to keep all of the rows in the first table (n,
which is the first, and therefore ‘left’ table)

5. <table 2 from csv> as m (we now refer to the data from this table using the
prefix m.; e.g. m.geometry)

6. ON <left table matching column> = <right table matching column> (here,
the unusual thin is the double-quotes around the column name required to
deal with the fact that the label contains spaces).

Notice how there are parallels between even quite different languages here: if you
have spaces or special characters or whatever in your columnname then you’re going
to need to handle that a little differently, and if you have two tables to join you have
a left (aka first) one and a right (aka second) one and the order matters.

Now, running the same query to get theWaltham Forest data can be done twoways:

%%time

boro = 'Waltham Forest'
query = f'''
SELECT *
FROM

read_parquet('data/MSOA_population_estimates.parquet') as n
INNER JOIN

read_csv('{cache_data(msoa_names_url, 'data')}', header=true) as m
ON

n."MSOA 2021 Code"=m.msoa11cd
WHERE

m.Laname='{boro}';
'''

db.sql(query).to_df().head(3)

+ data/MSOA-Names-1.20.csv found locally!
CPU times: user 35.9 ms, sys: 57 μs, total: 35.9 ms
Wall time: 32.4 ms

LAD 2021 Code LAD 2021 Name MSOA 2021 Code MSOA 2021 Name Total F0 to 4 F5 to 9 F10 to 14 F15 to 19 F20 to 24 ... M75 to 79 M80 to 84 M85 to 89 M90 and over msoa11cd msoa11nm msoa11nmw msoa11hclnm msoa11hclnmw Laname

0 E09000031 Waltham Forest E02000895 Waltham Forest 001 8363 208 233 250 228 215 ... 194 137 93 45 E02000895 Waltham Forest 001 Waltham Forest 001 Chingford Green West None Waltham Forest
1 E09000031 Waltham Forest E02000896 Waltham Forest 002 9322 256 278 264 230 241 ... 190 111 111 54 E02000896 Waltham Forest 002 Waltham Forest 002 Chingford Green East None Waltham Forest
2 E09000031 Waltham Forest E02000897 Waltham Forest 003 8438 233 262 276 212 209 ... 98 104 87 24 E02000897 Waltham Forest 003 Waltham Forest 003 Friday Hill None Waltham Forest

Everything here is basically the same except for:

1. We changed the LEFT JOIN to an INNER JOIN – this should make sense to you
if you’ve watched the lectures.

2. We added a WHERE m.Laname=<borough name> which restricts the match to only
those rows where the Local Authority name is Waltham Forest.

However, note that this query can also be written this way:

16

%%time

boro = 'Waltham Forest'
query = f'''
SELECT *
FROM

read_parquet('data/MSOA_population_estimates.parquet') as n,
read_csv('{cache_data(msoa_names_url, 'data')}', header=true) as m

WHERE m.Laname='{boro}'
AND n."MSOA 2021 Code"=m.msoa11cd;
'''

db.sql(query).to_df().head(3)

+ data/MSOA-Names-1.20.csv found locally!
CPU times: user 19.4 ms, sys: 1.95 ms, total: 21.3 ms
Wall time: 21.6 ms

LAD 2021 Code LAD 2021 Name MSOA 2021 Code MSOA 2021 Name Total F0 to 4 F5 to 9 F10 to 14 F15 to 19 F20 to 24 ... M75 to 79 M80 to 84 M85 to 89 M90 and over msoa11cd msoa11nm msoa11nmw msoa11hclnm msoa11hclnmw Laname

0 E09000031 Waltham Forest E02000895 Waltham Forest 001 8363 208 233 250 228 215 ... 194 137 93 45 E02000895 Waltham Forest 001 Waltham Forest 001 Chingford Green West None Waltham Forest
1 E09000031 Waltham Forest E02000896 Waltham Forest 002 9322 256 278 264 230 241 ... 190 111 111 54 E02000896 Waltham Forest 002 Waltham Forest 002 Chingford Green East None Waltham Forest
2 E09000031 Waltham Forest E02000897 Waltham Forest 003 8438 233 262 276 212 209 ... 98 104 87 24 E02000897 Waltham Forest 003 Waltham Forest 003 Friday Hill None Waltham Forest

The second way is a little easier to read, but it only allows you to do inner joinswhere
attributes need to match in both tables for a row to be kept. This situation is such a
common ‘use case’ that it makes sense to have this simpler syntax, but the previous
code will work for inner, left, right, and outer joins.

4 Spatial Joins

Spatial DuckDB

DuckDB also now supports spatial queries via the SPATIAL extension. Perfor-
mance is not that of a tuned Postgres+PostGIS database, but the overhead of
creating such a tuned database often exceeds the benefit for ad-hoc querying.
Basically, Postgres+PostGIS is great if you’re a company such as Booking.com,
Airbnb, or OpenStreetMap, but it’s most likely overkill for offline read-oriented
applications.

4.1 Why obvious is not always right (Part 432)

Building on what I said above in Section 3, even where you do have a spatial chal-
lenge, it can be worth it to convert it to a non-spatial solution to improve the overall
performance of your code. For instance, say you have data from LSOAs and want to
be able to aggregate it up to MSOAs and Boroughs to perform various analyses.

17

https://duckdb.org/docs/extensions/spatial.html

LSOA Table

LSOA Code Polygon

LSOA1 WKT(…)
LSOA2 WKT(…)
LSOA3 WKT(…)

MSOA Table

MSOA Code Polygon

MSOA1 WKT(…)
MSOA2 WKT(…)
MSOA3 WKT(…)

Borough Table

Borough Code Polygon

BORO1 WKT(…)
BORO2 WKT(…)
BORO3 WKT(…)

The obvious way to do this is as a spatial join: select all LSOAs within an MSOA
and aggregate them. And you would then run this same query for every dimension
you want to aggregate. This is not the right way to tackle this problem even though
you can write the query to give you the correct answer.

The right way when you are going to repeatedly run an expensive spatial query is
to work out if you can ‘cache’ the result to save time in the future. In this case the
answer is to create a ‘lookup table’ which uses the LSOA and MSOA and Borough
codes to tell you if a LSOA falls inside a borough or MSOA. You perform the hard
spatial query just once to create the lookup table, and thereafter you are using a
fast non-spatial query.

In this case your lookup table will be this…

Lookup Table

LSOA Code MSOA Code Borough Code

LSOA1 MSOA1 BORO1
LSOA2 MSOA1 BORO1
LSOA3 MSOA2 BORO1

Now you can do any kind of spatial aggregation you want without having to incur
the costs of running a spatial query using something like:

18

1 SELECT m."MSOA Code", SUM(<attribute>) as feature_sum, COUNT(<attribute 2>) as feature_count
2 FROM <lsoa data table> as l, <lookup table> as lkp
3 WHERE l."LSOA Code" = lkp."LSOA Code"
4 GROUP BY lkp."MSOA Code";

See, no need for a spatial query and you can run the same query easily for many
features. You can also use this as a foundation for creating a VIEW or a MATERIALIZED
VIEW, but that’s an advanced topic for managing your data more efficiently in an
operational environment rather than a research-oriented one.

But first, we need some actual geodata to work with:

msoa_gpkg = gpd.read_file(cache_data(f'{host}/~jreades/data//MSOA-2011.gpkg', ddir)).to_crs('epsg:27700')
listings = gpd.read_parquet(cache_data(f'{host}/~jreades/data/{ymd}-{city}-listings.geoparquet', ddir)).to_crs('epsg:27700')

+ data/geo/MSOA-2011.gpkg found locally!
+ data/geo/20240614-London-listings.geoparquet found locally!

4.2 In Geopandas

Let’s try to find all of the listings that fall within the borough of Waltham Forest, so
that implies two steps:

1. Subset the MSOA geo-data so that it only includes the Waltham Forest MSOAs.
2. Run a spatial query to find the listings that are within those MSOAs (we could,

optionally, union the MSOAs to get the outline of the borough)

boro = 'Waltham Forest'
boro_gdf = msoa_gpkg[msoa_gpkg.LAD11NM==boro].copy()

Do the spatial join
boro_listings = gpd.sjoin(listings, boro_gdf, predicate='within', rsuffix='_r')

Layer the plots
f, ax = plt.subplots(1,1,figsize=(8,5))
boro_gdf.plot(color="white", edgecolor="black", linewidth=0.5, ax=ax)
boro_listings.plot(column='price', cmap='viridis', legend=True, s=1.5, aspect=1, ax=ax)

19

536000 538000 540000

186000

188000

190000

192000

194000

196000

500

1000

1500

2000

2500

Warning

If you get ValueError: aspect must be finite and positive when you try to
make a plot (this seems fairly common with GeoPackages (.gpkg files) then you
will need to specify aspect=1 in the plot(...) command.

4.3 In SQL

After quite a bit of faff my conclusion is that, while you can do spatial queries in
DuckDB it is a lot of work and probably not worth the effort at this time. The ‘issue’
is that spatial support (as well as Excel supprt) is provided via the GDAL framework
and this takes quite a different approach. After working it out, spatial queries do
work fairly well if you do them entirely within DuckDB (reading, merging, and writing
the data) and then load the results in a separate step using GeoPandas; however,
you cannot get a GeoDataFrame back via db.query(<query>).to_df() since that only
returns a Pandas data frame and the geometry column is unreadable. In addition,
geoparquet support seems limited while GeoPackage performance is poor, so you’re
basically losing all the advantages of a parquet-based workflow.

So the examples below are provided for reference only and, on the whole, right now
I’d recommend using GeoPandas and geoparquet files directly.

%%time

boro = 'Waltham Forest'

20

query = f'''
LOAD SPATIAL;
COPY(
SELECT m.MSOA11CD, n.msoa11nm, n.Laname, m.geom
FROM

(SELECT MSOA11CD, geom FROM ST_Read("{cache_data(f'{host}/~jreades/data/MSOA-2011.gpkg', ddir)}")) AS m,
read_csv("{cache_data(msoa_names_url, 'data')}") AS n

WHERE m.MSOA11CD=n.msoa11cd
AND n.Laname='{boro}'

) TO 'data/geo/merged.gpkg' WITH (FORMAT GDAL, DRIVER 'GPKG', LAYER_CREATION_OPTIONS 'WRITE_BBOX=YES');
'''

db.sql(query)
rs = gpd.read_file('data/geo/merged.gpkg')
print(f"Result set has {rs.shape[0]:,} rows and {rs.shape[1]:,} columns.")
rs.head(5)
rs.plot(aspect=1)

+ data/geo/MSOA-2011.gpkg found locally!
+ data/MSOA-Names-1.20.csv found locally!

IOException: IO Error: Extension "/home/jovyan/.duckdb/extensions/v1.1.3/linux_arm64/spatial.duckdb_extension" not found.
Extension "SPATIAL" is an existing extension.
Install it first using "INSTALL SPATIAL".

IOException Traceback (most recent call last)
File <timed exec>:15
IOException: IO Error: Extension "/home/jovyan/.duckdb/extensions/v1.1.3/linux_arm64/spatial.duckdb_extension" not found.
Extension "SPATIAL" is an existing extension.
Install it first using "INSTALL SPATIAL".

5 Worked Example

With that background material, let’s now work through a practical example.

5.1 Load Geodata

A lot of useful geo-data can be accessed from the GeoPortal. And see also my dis-
cussion on lookup tables.

spath = 'https://github.com/jreades/fsds/blob/master/data/src/' # source path
water = gpd.read_file(cache_data(spath+'Water.gpkg?raw=true', ddir))
boros = gpd.read_file(cache_data(spath+'Boroughs.gpkg?raw=true', ddir))
green = gpd.read_file(cache_data(spath+'Greenspace.gpkg?raw=true', ddir))
msoas = gpd.read_file(cache_data(f'{host}/~jreades/data/MSOA-2011.gpkg', ddir)).to_crs('epsg:27700')

21

https://geoportal.statistics.gov.uk/
https://jreades.github.io/fsds/sessions/week8.html
https://jreades.github.io/fsds/sessions/week8.html
https://geoportal.statistics.gov.uk/datasets/postcode-to-output-area-to-lower-layer-super-output-area-to-middle-layer-super-output-area-to-local-authority-district-november-2018-lookup-in-the-uk-2/about

+ data/geo/Water.gpkg found locally!
+ data/geo/Boroughs.gpkg found locally!
+ data/geo/Greenspace.gpkg found locally!
+ data/geo/MSOA-2011.gpkg found locally!

5.2 Select London MSOAs

� Connections

One thing to remember here is that computers are exact. So if you say that
the selection should only be of MSOAs within London then you actually need
to think about whether a shared border qualifies as ‘within’. Watch the lectures
again if you’re unsure, but that’s why here we take this slightly clunk approach
of buffering the London boundary before doing the selection.

5.2.1 Union

As we don’t have a boundary file for London, we can generate use using the
unary_union operator (as we do here) or using the dissolve() approach. Consider
the pros and cons of each approach in terms of performance, output format, and
leigibility.

So here’s approach 1, which is a method call returning a GeoDataFrame (which is why
we can call plot):

boros.dissolve().plot();

510000520000530000540000550000560000

160000

170000

180000

190000

200000

And here’s approach 2, which is an attribute and returns a raw polygon (so no reason
to call plot, but it’s come back without the rest of the data frame!):

boros.unary_union

22

https://jreades.github.io/fsds/sessions/week10.html#lectures
https://geopandas.org/en/stable/docs/user_guide/aggregation_with_dissolve.html

/tmp/ipykernel_1499/1763876522.py:1: DeprecationWarning:

The 'unary_union' attribute is deprecated, use the 'union_all()' method instead.

� Connections

Notice how we’re also demonstrating some additional ways of plotting ‘on the
fly’ (without generating a data frame) as well as (below) showing you how to
zoom in/out.

ldn = gpd.GeoDataFrame(gpd.GeoSeries(data=boros.union_all())).rename(columns={0:'geometry'}).set_geometry("geometry")
ldn = ldn.set_crs(epsg=27700)
ax = ldn.plot(facecolor=(.5, .5, .9, .5))
msoas.plot(ax=ax, facecolor='none', edgecolor=(.6, .6, .6, .6))
ax.set_xlim(500000, 515000)
ax.set_ylim(180000, 195000);

23

500000502500505000507500510000512500515000
180000

182000

184000

186000

188000

190000

192000

194000

5.2.2 A (Bad) First Join

ldn_msoas = gpd.sjoin(msoas, ldn, predicate='within', how='inner')
ax = ldn.plot(facecolor=(.5, .5, .9, .5))
ldn_msoas.plot(ax=ax, facecolor='none', edgecolor=(.8, .4, .4), linewidth=0.75)
ax.set_xlim(500000, 515000)
ax.set_ylim(180000, 195000);

500000502500505000507500510000512500515000
180000

182000

184000

186000

188000

190000

192000

194000

What has gone wrong???

Before you move on to the solution, stop and actually think about what this
hasn’t done what you would have expected? THis is another reason that you
need to pay attention to the differences between spatial and non-spatial joins.

24

5.2.3 Buffer and Join

In order to ensure that we get all the MSOAs within London we need to buffer the
boundary by some amount to ensure that within returns what we want. If cover were
easier to use then that option might be preferable.

Question

ldn['buffered'] = ldn.geometry.???(???)
ldn = ldn.set_geometry('buffered').set_crs(epsg=27700)
ax = ldn.plot(facecolor=(.5, .5, .9, .5))
msoas.plot(ax=ax, facecolor='none', edgecolor=(.6, .6, .6, .6))
ax.set_xlim(500000, 515000)
ax.set_ylim(180000, 195000);

By default we want do an inner join because we want to drop everything that doesn’t
line up between the two data sets (i.e. don’t keep the thousands of other non-London
MSOAs).

Question

ldn_msoas = gpd.sjoin(msoas, ldn, predicate='???', how='inner')
ldn_msoas.plot()

Important Note
If your plot above looks like the output from pandas and not geopandas then the list
of columns and the documentation for set_geometry might help you to understand
what is going wrong:

print(", ".join(ldn_msoas.columns.to_list()))

MSOA11CD, MSOA11NM, LAD11CD, LAD11NM, RGN11CD, RGN11NM, USUALRES, HHOLDRES, COMESTRES, POPDEN, HHOLDS, AVHHOLDSZ, geometry, index_right, geometry_right

It’s important to recognise that join and sjoin are not the same even though they
may effectively perform the same function. An issue can arise if we join two geodata
frames using the join function from pandas. The latter doesn’t know anything about
spatial data and we can therefore ‘lose track’ of the geometry column. Worse, there
are actually two geometry columns now, so we need to tell Geopandas which one to
use!

The easiest way to do this is to simply rename the geometry we want and then set is
as the active geometry. Here’s the code to use if you have a geometry_left column
and aren’t able to show a map:

ldn_msoas = ldn_msoas.rename(columns={'geometry_left':'geometry'}).set_geometry('geometry')
ldn_msoas.drop(columns='geometry_right', inplace=True)

We also no longer really need to keep the full MSOA data set hanging about.

25

try:
del(msoas)

except NameError:
print("msoas already deleted.")

Question

• Can you explain why the outputs of the dissolve and union_all look differnet?
And use that as the basis for explaining why they are different?

Answer 1

• How do you know that the units for the buffering operation are metres? 250
could be anything right?

Answer 2

• Why do we need to buffer the London geometry before performing the within
spatial join?

Answer 3

5.3 Append or Derive Names

We don’t actually make use of these in this session, but both operations could be
relevant to your final reports:

1. The Borough-to-Subregion mapping could help you to group your data into
larger sets so that your resulst become more reobust. it also connects us to
long-run patterns of socio-economic development in London.

2. TheMSOANames data set (which you used above) gives you something that you
could use to label one or more ‘neighbourhoods’ on a map with names that are
relevant. So rather than talking about “As you can see, Sutton 003, is…”, you can
write “The Wrythe neighbourhood [or area] of Sutton is significantly different
from the surrounding areas…”

They also usefully test your understanding of regular expressions and a few other
aspects covered in previous weeks.

5.3.1 Replace

You’ve done this before: notice that the MSOA Name contains the Borough name
with a space and some digits at the end. Use a regex (in str.replace()) to extract
the LA name from the MSOA name. See if you do this without having to find your
previous answer!

Question

26

ldn_msoas['Borough'] = ldn_msoas.MSOA11NM.str.replace(r'???','',regex=True)

Just check results look plausible; you should have:
- 33 boroughs
- A df shape of 983 x 13
print(ldn_msoas.Borough.unique())
print(f"There are {len(ldn_msoas.Borough.unique())} boroughs.")
print(f"Overall shape of data frame is {' x '.join([str(x) for x in ldn_msoas.shape])}")

5.3.2 Map

Now that we’ve got the borough names we can set up a mapping dict here so that we
can apply it as part of the groupby operation below (you should have 33 keys when
done):

mapping = {}
for b in ['Enfield','Waltham Forest','Redbridge','Barking and Dagenham','Havering','Greenwich','Bexley']:

mapping[b]='Outer East and North East'
for b in ['Haringey','Islington','Hackney','Tower Hamlets','Newham','Lambeth','Southwark','Lewisham']:

mapping[b]='Inner East'
for b in ['Bromley','Croydon','Sutton','Merton','Kingston upon Thames']:

mapping[b]='Outer South'
for b in ['Wandsworth','Kensington and Chelsea','Hammersmith and Fulham','Westminster','Camden']:

mapping[b]='Inner West'
for b in ['Richmond upon Thames','Hounslow','Ealing','Hillingdon','Brent','Harrow','Barnet','City of London']:

mapping[b]='Outer West and North West'
print(len(mapping.keys()))

33

Question

ldn_msoas['Subregion'] = ldn_msoas.Borough.map(???)

5.3.3 And Save

ldn_msoas.to_parquet(os.path.join('data','geo','London_MSOA_Names.geoparquet'))

5.4 Load InsideAirbnb Data

listings = gpd.read_parquet(cache_data(f'{host}/~jreades/data/{ymd}-{city}-listings.geoparquet', ddir)).to_crs(epsg=27700)
print(f"Data frame is {listings.shape[0]:,} x {listings.shape[1]}")

+ data/geo/20240614-London-listings.geoparquet found locally!
Data frame is 85,127 x 32

27

5.4.1 Spatial Join

Associate LA (Local Authority) names to the listings using a spatial join, but notice
the how here:

Question

gdf_la = gpd.sjoin(listings, ???, predicate='???', how='left')
print(gdf_la.columns.to_list())

5.4.2 Tidy Up

gdf_la.drop(columns=['index_right','HECTARES','NONLD_AREA','ONS_INNER'], inplace=True)

You’ll need to look closely to check that the value_counts output squares with your
expectations. If you don’t get 33 then there’s an issue and you’ll need to run the
code in Section 5.4.3:

if len(gdf_la.NAME.unique()) == 33:
print("All good...")

else:
print("Need to run the next section of code...")
print(f"Now there are... {len(gdf_la.NAME.unique())} boroughs?")
gdf_la.NAME.value_counts(dropna=False)

All good...

5.4.3 Find Problematic Listings

If you were told that you need to run the next sectin of code then see if you can work
out what happened…

try:
print(gdf_la[gdf_la.NAME.isna()].sample(2)[['name', 'NAME']])
ax = gdf_la[gdf_la.NAME.isna()].plot(figsize=(9,6), markersize=5, alpha=0.5)
boros.plot(ax=ax, edgecolor='r', facecolor='None', alpha=0.5);

except ValueError as e:
pass

In short: in some cases there may be records that fall outside of London because of
Airbnb’s shuffling approach:

gdf_la.drop(index=gdf_la[gdf_la.NAME.isna()].index, axis=1, inplace=True)
print(f"Data frame is {gdf_la.shape[0]:,} x {gdf_la.shape[1]}")

28

5.4.4 Check and Save

ax = gdf_la.plot(column='NAME', markersize=0.5, alpha=0.5, figsize=(9,7))
boros.plot(ax=ax, edgecolor='r', facecolor='None', alpha=0.5);

You should get the following:

510000 520000 530000 540000 550000 560000

160000

170000

180000

190000

200000

gdf_la.to_parquet(os.path.join('data','geo','Listings_with_LA.geoparquet'))

Question

• Do you understand the difference between how='inner' and how='left'?

5.5 Create LA Data

Now that we’ve assigned every listing to a borough, we can derive aggregate values
for different groups of zones.

5.5.1 Select LA

Select a LA that is relevant to you to explore further…

LA = 'Waltham Forest'

29

5.5.2 Spatial Join

The first thing we want to do is join MSOA identifiers to each listing. In both cases
we want to constrain the data to only be for ‘our’ LA of interest since that will speed
up the process substantially:

gdf_msoa = gpd.sjoin(
gdf_la[gdf_la.NAME==LA].reset_index(),
ldn_msoas[ldn_msoas.Borough==LA][['MSOA11CD','MSOA11NM','USUALRES','HHOLDS','Subregion','geometry']], predicate='within')

gdf_msoa.head(2)

index id listing_url last_scraped name description host_id host_name host_since host_location ... reviews_per_month geometry NAME GSS_CODE index_right MSOA11CD MSOA11NM USUALRES HHOLDS Subregion

0 37 41870 https://www.airbnb.com/rooms/41870 2023-09-07 Home in Walthamstow · 2 bedrooms · 1 bed · 2.5... Lovely friendly house, close to central line u... 182993 Bimpe 2010-07-27 London, United Kingdom ... 0.01 POINT (538919.28 186290.652) Waltham Forest E09000031 888 E02000921 Waltham Forest 027 11001 3966 Outer East and North East
1 90 78606 https://www.airbnb.com/rooms/78606 2023-09-07 Rental unit in Walthamstow · 1 bedroom · 1 pri... Comfortable, modern home with a friendly host ... 422362 Nicola 2011-03-04 London, United Kingdom ... 0.04 POINT (539419.512 187953.652) Waltham Forest E09000031 882 E02000915 Waltham Forest 021 8643 3305 Outer East and North East

5.5.3 Aggregate

Now aggregate the data by MSOA, deriving median price and a count of the listings:

grdf_msoa = gdf_msoa.groupby('MSOA11NM').agg(
listing_count = ('price','count'),
median_price = ('price','median')

).reset_index()
print(f"Have {grdf_msoa.shape[0]:,} rows and {grdf_msoa.shape[1]:,} columns")
grdf_msoa.head(2)

Have 28 rows and 3 columns

MSOA11NM listing_count median_price

0 Waltham Forest 001 17 97.0
1 Waltham Forest 002 14 58.0

5.5.4 Join (Again)

Here we see the difference betweenmerge and join. You’ll notice that join operates
by taking one data frame as the implicit ‘left’ table (the onewhich calls join) while the
one that is passed to the join function is, implicitly, the ‘right’ table. Join operates
only using indexes, so you’ll need to insert the code to specify the same index on
both data frames, but this can be done on-the-fly as part of the joining operation:

msoa_gdf = grdf_msoa.set_index('MSOA11NM').join(
ldn_msoas[ldn_msoas.Borough==LA].set_index('MSOA11NM'),
rsuffix='_r').set_geometry('geometry')

msoa_gdf.head(3)

30

listing_count median_price MSOA11CD LAD11CD LAD11NM RGN11CD RGN11NM USUALRES HHOLDRES COMESTRES POPDEN HHOLDS AVHHOLDSZ geometry index_right geometry_right Borough Subregion
MSOA11NM

Waltham Forest 001 17 97.0 E02000895 E09000031 Waltham Forest E12000007 London 7979 7962 17 36.4 3271 2.4 MULTIPOLYGON (((537919.442 195742.428, 538051.... 0 POLYGON ((528150.2 159979.2, 528100.9 160037.3... Waltham Forest Outer East and North East
Waltham Forest 002 14 58.0 E02000896 E09000031 Waltham Forest E12000007 London 8814 8719 95 31.3 3758 2.3 MULTIPOLYGON (((539172.688 195540, 539696.813 ... 0 POLYGON ((528150.2 159979.2, 528100.9 160037.3... Waltham Forest Outer East and North East
Waltham Forest 003 7 89.0 E02000897 E09000031 Waltham Forest E12000007 London 8077 7991 86 42.9 3345 2.4 MULTIPOLYGON (((538862.624 194017.438, 539001.... 0 POLYGON ((528150.2 159979.2, 528100.9 160037.3... Waltham Forest Outer East and North East

msoa_gdf.plot(column='median_price', legend=True, figsize=(8,8));

You should get something like:

535000536000537000538000539000540000

186000

188000

190000

192000

194000

196000

50

60

70

80

90

100

110

5.5.5 Save

Just so that we can pick up here without having to re-run all the preceding cells.

31

msoa_gdf.to_parquet(os.path.join('data','geo',f'{LA}-MSOA_data.geoparquet'))

Question

• Do you understand the differences between pd.merge and df.join? and
gpd.sjoin?

• Do you understand why it may be necessary to set_geometry in some cases?

32

	Preamble
	Selecting Data
	Non-Spatial Joins
	Spatial Joins
	Worked Example

