
Practical 10: Presenting Data
Visualisation and Tables

Table of contents

1 Preamble 1

2 Using Maplotlib 3

3 Create an Atlas 9

4 Think Text! 11

5 Using Bokeh 12

Important

This practical focusses on the final topic we want to cover in Foundations: vi-
sualisation! You will have seen quite a bit of this across the preceding three to
four weeks, but it was done in an ad-hoc way, here we try to systematise things
a bit.

� Connections

Here we’re trying to tidy up the loose ends. You’ve already worked with ba-
sic data visualisations in Seaborn and Matplotlib (including (geo)panda’s plot
function), but we want you to have a better sense of how that works as part
of a coherent – if altogether rather complex and overwhelming – approach to
managing a data visualisation.

1 Preamble

import os
import numpy as np
import pandas as pd
import geopandas as gpd
import seaborn as sns

import matplotlib.cm as cm
import matplotlib.pyplot as plt

1

import os
from requests import get
from urllib.parse import urlparse
from functools import wraps

def check_cache(f):
@wraps(f)
def wrapper(src, dst, min_size=100):

url = urlparse(src) # We assume that this is some kind of valid URL
fn = os.path.split(url.path)[-1] # Extract the filename
dsn = os.path.join(dst,fn) # Destination filename
if os.path.isfile(dsn) and os.path.getsize(dsn) > min_size:

print(f"+ {dsn} found locally!")
return(dsn)

else:
print(f"+ {dsn} not found, downloading!")
return(f(src, dsn))

return wrapper

@check_cache
def cache_data(src:str, dst:str) -> str:

"""Downloads a remote file.

The function sits between the 'read' step of a pandas or geopandas
data frame and downloading the file from a remote location. The idea
is that it will save it locally so that you don't need to remember to
do so yourself. Subsequent re-reads of the file will return instantly
rather than downloading the entire file for a second or n-th itme.

Parameters

src : str

The remote *source* for the file, any valid URL should work.
dst : str

The *destination* location to save the downloaded file.

Returns

str

A string representing the local location of the file.
"""

Convert the path back into a list (without)
the filename -- we need to check that directories
exist first.
path = os.path.split(dst)[0]
print(f"Path: {path}")

Create any missing directories in dest(ination) path
-- os.path.join is the reverse of split (as you saw above)

2

but it doesn't work with lists... so I had to google how
to use the 'splat' operator! os.makedirs creates missing
directories in a path automatically.
if path != '':

os.makedirs(path, exist_ok=True)

Download and write the file
with open(dst, "wb") as file:

response = get(src)
file.write(response.content)

print(' + Done downloading...')

return dst

2 Using Maplotlib

2.1 Anatomy of a Figure

Tip

You might want to bookmark the ‘Anatomy of a Figure’ image so that you can
easily find and refer to it in the future. This structure is why matplotlib is so
much nastier than ggplot, but it does also give you greater control over the
output if you really dig into the guts of things.

One of the reasons that Matplotlib is somuchmore complex than ggplot is that it can
actually do a lot more than ggplot, including image manipulation, axis translation,
and even 3D. You can get a sense of this by looking at the tutorials since the Users
guide can be a bit overwhelming.

Nevertheless, the core components of all matplotlib figures can be seen here:

2.2 Finding Fonts

I find matplotlib’s use of fonts to be profoundly weird. If you use conda and install
directly on to the computer then you might have access to all of your computer’s
fonts (though there are different types of fonts as well, not all of which will show
up), but for most users it will be those that were installed into Docker.

3

https://matplotlib.org/stable/tutorials/index.html
https://matplotlib.org/stable/users/index.html
https://matplotlib.org/stable/users/index.html
https://matplotlib.org/stable/gallery/showcase/anatomy.html

2.2.1 Listing Fonts

Warning

Depending on how you are running the notebook, you may not be able to see
all of the fonts available on your system. If the notebook is running in a Docker
container it only has access to the fonts that are installed in the container. In
other words: don’t panic if you don’t see the font(s) you want..

from matplotlib import font_manager
from IPython.core.display import HTML

flist = font_manager.findSystemFonts()
names = []
for fname in flist:

try:
names.append(font_manager.FontProperties(fname=fname).get_name())

except RuntimeError:
pass # Think the issue is emoji-support/colour fonts

print(f"Found {len(set(names))} fonts.")

def make_html(fontname):
return "<p>{font}: {font}</p>".format(font=fontname)

code = "\n".join([make_html(font) for font in sorted(set(names))])

HTML("<div style='column-count: 2;'>{}</div>".format(code))

Found 392 fonts.

<IPython.core.display.HTML object>

2.2.2 Using Fontconfig

fontconfig is the base Linux utility for managing fonts. We can list font using
fc-list and then a set of ‘switches’ determining the kind of information we want
back. Since fontconfig doesn’t exist on OSX or Windows, you’ll need to do some
more investigating and poking around to get these details on a conda install (I’ll
show an option further down)…

Here we ask fontconfig to format the output so that we only get the first part of the
family name, and thenwe pipe (recall | sends output fromone utility to another!) the
output of that to sort, which sorts the output, and uniq which removes duplicates
(which there will be because there are bold, italic, small-caps, etc. versions of each
font). To make better sense of this you can always try playing around with all three
steps in the output below!

4

fonts = ! fc-list --format="%{family[0]}\n" | sort | uniq
print(fonts[:5])

['.Al Bayan PUA', '.Al Nile PUA', '.Al Tarikh PUA', '.Apple Color Emoji UI', '.Apple SD Gothic NeoI']

Capturing output

Notice that we’re able to capture the output of an external application (called
via the Terminal) with fonts = ! This can be useful when something is
easy to do on the command line but hard to do in Python.

The below option also pipes output from fonctconfig, but to the grep utility which
checks each line for the character sequence Liberation. Nowwe’re asking fontconfig
to include style details which will relate to both weight (regular, bold, extra bold,
light, etc.) and italic, bold, small caps, etc.

fonts = ! fc-list : family style | grep "Liberation"
print(sorted(fonts)[:5])

['Liberation Mono:style=Bold', 'Liberation Mono:style=Bold Italic', 'Liberation Mono:style=Italic', 'Liberation Mono:style=Regular', 'Liberation Sans Narrow:style=Bold']

You can find more examples here, a more detailed set of instructions here, and even
information about (for example) supported languages based on RFC 3066.

Here are the languages supported by the Ubuntu Light font:

langs = ! fc-list "Liberation Mono" : lang
print(sorted(langs)[:5], "...")

[':lang=aa|af|av|ay|be|bg|bi|br|bs|ca|ce|ch|co|cs|cy|da|de|el|en|eo|es|et|eu|fi|fj|fo|fr|fur|fy|gd|gl|gv|ho|hr|hu|ia|id|ie|ik|io|is|it|ki|kl|kum|la|lb|lez|lt|lv|mg|mh|mo|mt|nb|nds|nl|nn|no|nr|nso|ny|oc|om|os|pl|pt|rm|ro|ru|se|sel|sk|sl|sma|smj|smn|so|sq|sr|ss|st|sv|sw|tk|tl|tn|tr|ts|uk|uz|vo|vot|wa|wen|wo|xh|yap|zu|an|crh|csb|fil|hsb|ht|jv|kj|ku-tr|kwm|lg|li|ms|na|ng|pap-an|pap-aw|rn|rw|sc|sg|sn|su|za'] ...

Here are the monospace fonts installed:

monos = ! fc-list :spacing=mono : family | sort | uniq
print(sorted(monos)[:5], "...")

['.Apple Color Emoji UI', '.LastResort', '.SF NS Mono', '.Times LT MM', 'Adobe Garamond'] ...

2.2.3 Fontdicts

Now that we know what’s available, the next step is to set up some useful defaults
that we can re-use across multiple plots to ensure consistency of output. The format
for specifying fonts on a per-figure basis is a dictionary, so where you see fontdict
in the matplotlib documentation the following should work:

Here’s the example:

5

https://www.geeksforgeeks.org/fc-list-command-in-linux-with-examples/
https://www.freedesktop.org/software/fontconfig/fontconfig-user.html
https://thottingal.in/blog/2016/03/04/fontconfig-language-matching/
http://www.i18nguy.com/unicode/language-identifiers.html
https://matplotlib.org/stable/gallery/text_labels_and_annotations/text_fontdict.html

font = {'family': 'serif',
'color': 'darkred',
'weight': 'normal',
'size': 16,
}

ff='Liberation Sans'
tfont = {'fontname':ff}
bfont = {'fontname':ff, 'weight':'bold', 'horizontalalignment':'left'}
afont = {'fontname':ff}

I am setting the ‘title font’ (tfont) and ‘body copy font’ (bfont) and ‘axis font’ (afont)
here to use in the output below. You can pick another font and see what happens.

2.2.4 2.3: Using Fonts

At this point we’re going to work towards a kind of ‘atlas’ that would make it easy
to compare some features for different London boroughs. I basically implemented
a the basic matplotlib version of QGIS’ Atlas functionality.

This will be whatever LA you processed last week
LA = 'Waltham Forest'

msoa_gdf = gpd.read_parquet(os.path.join('data','geo',f'{LA}-MSOA_data.geoparquet'))

median_gdf = msoa_gdf[['MSOA11CD','median_price','geometry']]
listing_gdf = msoa_gdf[['MSOA11CD','listing_count','geometry']]

import matplotlib.pyplot as plt

2.2.5 The Defaults

Here is a demonstration of some of the ways you can adjust features in a Python
matplotlib plot. I’m not suggesting either of these is a good output, but that’s not
the point! The idea is to see the various ways you can tweak a plot… And notice that
we’ve not yet changed any fonts. And it shows.

Set up a 1 x 2 plot (you can also leave off the nrows= and ncols=)
f,axes = plt.subplots(nrows=1, ncols=2, figsize=(8,6))
ax1 will be the first plot on the left, ax2 will be on the right;
a 2 (or more) *row* plot will return a list of lists... 1 list/row.
ax1 = axes[0]
ax2 = axes[1]

Left plot is the median price
median_gdf.plot(column='median_price', ax=ax1, legend=True, cmap='viridis')
ax1.set_title("Median Price per MSOA");

6

Turn off the frame, one side of the plat at a time
ax1.spines['top'].set_visible(False)
ax1.spines['right'].set_visible(False)
ax1.spines['bottom'].set_visible(False)
ax1.spines['left'].set_visible(False)
Set the labels
ax1.set_xlabel("Easting");
ax1.set_ylabel("Northing");

Right plot is the number of listings; note
here the use of both zorder (which is the
'stacking order' of elements on the plot, and
the legend_kwds (keywords) to change the
orientation of the plot to horizontal
listing_gdf.plot(column='listing_count', ax=ax2, legend=True, cmap='plasma', zorder=1,

legend_kwds={"orientation": "horizontal"})
ax2.set_title("Count of Listings per MSOA");
Set a background colour for the plot
ax2.set_facecolor((.4, .4, .4, .2))
Add grid lines and set their zorder to
below that of the data on the plot
plt.grid(visible=True, which='major', axis='both', color='w', linestyle='-', linewidth=2, zorder=0)
ax2.set_axisbelow(True)

This is equivalent to the ax1.spines...
above, but if you use it here you lose
the background to the plot as well!
#plt.gca().set(frame_on=False)

Remove the labels on the ticks of the
axes (meaning: remove the numbers on
x- and y-axes).
ax2.set_xticklabels([])
ax2.set_yticklabels([])

Set the labels
ax2.set_xlabel("Easting");
ax2.set_ylabel("Northing");

7

536000 538000 540000
Easting

186000

188000

190000

192000

194000

196000
No

rth
in

g

Median Price per MSOA

Easting

No
rth

in
g

Count of Listings per MSOA

50

60

70

80

90

100

110

20 40 60 80 100 120

2.2.6 Improving on Defaults

f,axes = plt.subplots(1,2,figsize=(8,6))

Set up the plots
median_gdf.plot(column='median_price', ax=axes[0], legend=True, cmap='viridis')
listing_gdf.plot(column='listing_count', ax=axes[1], legend=True, cmap='plasma')
for ax in axes:

ax.axis('off')
Note that here, set_facebolor doesn't work,
presumably because the axis is 'off'
ax.set_facecolor((.4, .4, .4, .2))

Add the 'super-title', but notice that it is not
longer either centered (x=0.025) or centre-aligned
(horizonal alignment=left). We also see **tfont, which
is a way of expading the 'tfont' dictionary into a
set of parameters to a function call. We do the same
for the titles on each figure, but passing a different
fontdict.
f.suptitle(LA, x=0.025, ha='left', size=24, **tfont)
axes[0].set_title('Median Price', size=20, **afont)
axes[1].set_title('Count', size=20, **afont)

And add a short piece of text below the borough
plt.figtext(x=0.025, y=0.92, linespacing=1.4, va='top', size=12,

8

s=f"Total listings: {listing_gdf['listing_count'].sum():,.0f}\nMedian price: ${median_gdf['median_price'].median():,.2f}", **bfont);

Median Price Count

50

60

70

80

90

100

110

20

40

60

80

100

120

Waltham Forest
Total listings: 1,637
Median price: $76.00

3 Create an Atlas

3.1 Adding Picture-in-Picture

We’re now going to emulate a bit of QGIS’ Atlas function by creating two subplots
and then adding a third plot afterwards that shows where the borough is.

f,axes = plt.subplots(1,3,gridspec_kw={'width_ratios':[1,4,4]}, figsize=(8,6))

Plot 0 is basically being used as a 'spacer'
as you'll see below
axes[0].axis('off')

Plot 1 is the median price
median_gdf.plot(column='median_price', ax=axes[1], legend=True, cmap='viridis')
axes[1].set_title('Median Price', size=20, **afont)

Plot 2 is the count of listings
listing_gdf.plot(column='listing_count', ax=axes[2], legend=True, cmap='plasma')
axes[2].set_title('Count', size=20, **afont)

For plots 1 and 2... if you were doing this a lot it could be a function!
for ax in axes[1:]:

9

ax.set_facecolor((.9, .9, .9, .5))
ax.grid(visible=True, which='major', axis='both', color='w', linestyle='-', linewidth=2, zorder=0)
ax.set_axisbelow(True)
ax.spines['top'].set_visible(False)
ax.spines['bottom'].set_visible(False)
ax.spines['left'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.set_xticklabels([])
ax.set_yticklabels([])
ax.tick_params(axis='both', which='both', length=0)

Add a *third* chart that we use as a kind of 'PiP'
to show which borough we're talking about. The
add_axes call is here taking information about the
positioning and size of the additional figure.
Disable ax2.axis('off') if you want to see the
figure in full.
ax3 = f.add_axes([0.015, 0.7, 0.2, 0.2])
spath = 'https://github.com/jreades/fsds/blob/master/data/src/' # source path
ddir = os.path.join('data','geo') # destination directory
boros = gpd.read_file(cache_data(spath+'Boroughs.gpkg?raw=true', ddir))
boros.plot(facecolor='lightgrey', edgecolor='w', linewidth=1, ax=ax3)
boros[boros.NAME==LA].plot(facecolor='r', edgecolor='none', hatch='///', ax=ax3)
ax3.axis('off')

Add the 'super-title', but notice that it is not
longer either centered (x=0.025) or centre-aligned
(horizonal alignment=left). We also see **tfont, which
is a way of expanding the 'tfont' dictionary into a
set of parameters to a function call. We do the same
for the titles on each figure, but passing a different
fontdict.
f.suptitle(LA, x=0.025, ha='left', size=24, **tfont)

And add a short piece of text below the borough
plt.figtext(x=0.025, y=0.65, s=f"Total listings: {listing_gdf['listing_count'].sum():,.0f}", size=12, **bfont);

+ data/geo/Boroughs.gpkg found locally!

10

Median Price Count

50

60

70

80

90

100

110

20

40

60

80

100

120

Waltham Forest

Total listings: 1,637

3.2 Bonus Achievement Unlocked!

If you have the time and inclination, see if you can convert the above to an actual
atlas output:

1. You’ll want to turn this plot into a function so as to be able to produce (and
save) the map for every borough.

2. You’ll even need to parameterise the filename so that you save to different PNG
files as well as going back to see how we generated the listing and pricing data
frames for the Local Authority…

3. And you’ll also need to make sure that you ensure a consistent colour bar (for
all of London, because the median price and number of listings will vary rather
a lot by LA)

4. Then there’s the placement of the PiP for some boroughs with long names
5. And finally, you might consider adding some more text to atlas–maybe pull

some content from Wikipedia using Beautiful Soup (bs4)?

4 Think Text!

I also wanted to draw your attention to this outstanding piece on using text effec-
tively in data visualisation: we often add labels as afterthoughts without too much
regard for where they go or how they look; however, getting the content, positioning,
size, and even font/font-weight ‘right’ can make all the difference to the effective-
ness of your chart! The illustrations are top-notch.

And see the bibliography at the end!

11

https://blog.datawrapper.de/text-in-data-visualizations/

Bookmark Me!

Basically, bookmark this blog post and refer to it every time you are making a
map or chart.

5 Using Bokeh

Bokeh can do a lot more than this, but I just wanted to give you a flavour of the
other visualisation tools supported by Python. This obviously works very differently
in setup and use.

gdf_la = gpd.read_parquet(os.path.join('data','geo','Listings_with_LA.geoparquet'))
msoas = gpd.read_parquet(os.path.join('data','geo','London_MSOA_Names.geoparquet'))

5.1 For a Chart

Group the listings by Borough and Room Type, and aggregate by median price, also
producing a count variable for the number of listings of each type in each Borough.

la_tots = gdf_la[gdf_la.NAME==LA].groupby(by='room_type', observed=False).agg(
{'price':'median', 'listing_url':'count'}

).reset_index().rename(columns={'listing_url':'count'})
la_tots

room_type price count

0 Entire home/apt 117.0 946
1 Hotel room NaN 0
2 Private room 47.0 687
3 Shared room 24.5 6

from bokeh.io import output_notebook, show
from bokeh.plotting import figure
from bokeh.models import ColumnDataSource, HoverTool
from bokeh.palettes import Spectral4
from bokeh.models import CustomJS, Dropdown

output_notebook()

room_types = la_tots.room_type.to_list()
prices = la_tots.price.to_list()
counts = la_tots['count'].to_list()

Add hover tooltip
source = ColumnDataSource(data=dict(

rt=room_types,

12

https://blog.datawrapper.de/text-in-data-visualizations/

count=counts,
price=prices,

))

TOOLTIPS = [
("Room Type", "@rt"),
("Number of Listings", "@count{,}"),
("Median Price", "$@price{,}/night")

]

p = figure(x_range=room_types, height=300, tooltips=TOOLTIPS,
title=f"Median Price by Room Type in {LA}",
toolbar_location=None, tools="")

p.vbar(x='rt', top='count', width=0.9, source=source)
p.xgrid.grid_line_color = None
p.y_range.start = 0

show(p)

Unable to display output for mime type(s): text/html

Unable to display output for mime type(s): application/javascript, application/vnd.bokehjs_load.v0+json

Unable to display output for mime type(s): text/html

Unable to display output for mime type(s): application/javascript, application/vnd.bokehjs_exec.v0+json

5.2 For a Map

This is not the prettiest code, but it should work…

from bokeh.plotting import figure

from bokeh.io import output_file, show, output_notebook, push_notebook, export_png
from bokeh.models import ColumnDataSource, GeoJSONDataSource, LinearColorMapper, ColorBar, HoverTool
from bokeh.plotting import figure
from bokeh.palettes import brewer

#output_notebook()

msoadf = gpd.sjoin(
gdf_la[gdf_la.NAME==LA].reset_index(),
msoas[msoas.Borough==LA].drop(columns=['index_right']), predicate='within')

msoagrdf = msoadf.groupby('MSOA11NM').agg({'price':['median','count']}).reset_index()
msoagrdf.columns=['msoa11nm','median','count']

13

I cobbled the mapping functions below together from two tutorials I found online
(this one and this one). As you can see, this is a very different approach to mapping
data, but it has clear benefits for exploratory purposes and produces fast, interactive
maps… and I’ve not even added selection and filtering tools!

import json

def get_geodatasource(gdf):
"""Get getjsondatasource from geopandas object"""
json_data = json.dumps(json.loads(gdf.to_json()))
return GeoJSONDataSource(geojson = json_data)

def bokeh_plot_map(gdf, column=None, title=''):
"""Plot bokeh map from GeoJSONDataSource """

geosource = get_geodatasource(gdf)
palette = brewer['OrRd'][8]
palette = palette[::-1]
vals = gdf[column]

#Instantiate LinearColorMapper that linearly maps numbers in a range, into a sequence of colors.
color_mapper = LinearColorMapper(palette=palette, low=vals.min(), high=vals.max())
color_bar = ColorBar(color_mapper=color_mapper, label_standoff=8, width=500, height=10,

location=(0,0), orientation='horizontal')

tools = 'wheel_zoom,pan,reset,hover'

p = figure(title = title, height=700, width=850, toolbar_location='right', tools=tools)
p.add_tile("CartoDB Positron", retina=True)
p.xgrid.grid_line_color = None
p.ygrid.grid_line_color = None

Add patch renderer to figure
p.patches('xs','ys', source=geosource, fill_alpha=0.5, line_width=0.5, line_color='white',

fill_color={'field' :column , 'transform': color_mapper})

Specify figure layout.
p.add_layout(color_bar, 'below')

Add hover
hover = p.select_one(HoverTool)
hover.point_policy = "follow_mouse"
hover.tooltips = [("Borough", "@Borough"),

("Neighbourhood", "@msoa11hclnm"),
("Count of Listings", "@count"),
("Median Price", "$@median")]

return p

Reproject to Web Mercator:

14

https://github.com/dmnfarrell/teaching/blob/master/geo/maps_python.ipynb
https://widdowquinn.github.io/Teaching-Data-Visualisation/exercises/interactive_bokeh_map/interactive_bokeh_map.html

msoa_gdf = pd.merge(msoagrdf, msoas, left_on='msoa11nm', right_on='MSOA11NM', how='inner')
msoa_gdf = msoa_gdf.set_geometry('geometry').set_crs('epsg:27700')

msoageo = msoa_gdf.to_crs('epsg:3785')
msoageo.total_bounds

array([-6.74542047e+03, 6.71906611e+06, 3.04361304e+03, 6.73637453e+06])

And map it!

Need to drop the right geometry column
as Bokeh doesn't know how to handle two
and tries to 'serialise' the second geom.
p = bokeh_plot_map(msoageo.drop(columns=['geometry_right','index_right']), 'median', title=f'MSOA-Level Activity in {LA}')

handle = show(p, notebook_handle=True)
push_notebook(handle=handle)

Unable to display output for mime type(s): text/html

Unable to display output for mime type(s): application/javascript, application/vnd.bokehjs_exec.v0+json

� Connections

And that’s it. That’s all she wrote! You’ve now covered in <10 weeks what many
people might take 10months to cover. So do not feel like either: 1) you know it
all; or 2) you know nothing. You have learned a lot, but it’s probably just enough
to see how much you don’t know. And that is the start of wisdom. Good luck,
young Python-master!

15

	Preamble
	Using Maplotlib
	Create an Atlas
	Think Text!
	Using Bokeh

