
Practical 11: Dimensions in Data
Transformation & Dimensionality Reduction

Table of contents

1 Preamble 2

2 Loading MSOA Census Data 2

3 Splitting into Test & Train 18

4 Normalisation 20

5 Standardisation 23

6 Non-Linear Transformations 24

7 Principal Components Analysis 29

8 UMAP 34
In this session the focus is on MSOA-level Census data from 2011. We’re going to
explore this as a possible complement to the InsideAirbnb data. Although it’s not
ideal to use 2011 data with scraped from Airbnb this year, we:

1. Have little choice as the 2021 data is only just starting to come through from
the Census and the London Data Store hasn’t been updated (still!); and

2. Could usefully do a bit of thinking about whether the situation in 2011 might in
some way help us to ‘predict’ the situation now…

Ultimately, however, you don’t need to use this for your analysis, this practical is
intended as a demonstration of how transformation and dimensionality reduction
work in practice and the kinds of issues that come up.

� Connections

There are a lot of links across sessions now, as well as some forward links to
stuff we’ve not yet covered (see: pandas.merge). We’ll pick these up as wemove
through the notebook.

1

1 Preamble

Let’s start with the usual bits of code to ensure plotting works, to import packages
and load the data into memory.

import os
import re
import numpy as np
import pandas as pd
import geopandas as gpd
import seaborn as sns

import matplotlib.cm as cm
import matplotlib.pyplot as plt

from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import RobustScaler
from sklearn.preprocessing import PowerTransformer

import umap
from kneed import knee_locator

Notice here that we’ve moved the function from last week’s notebook to a separate
file cache.py from which we import the cache_data function. This should give you
some ideas about how to work from script -> function -> library effectively.

from cache import cache_data

2 Loading MSOA Census Data

� Connections

By this point you should be fairly familiar with the UK’s census geographies
as you’ll have encountered them in your GIS module. But in case you need a
refresher, here’s what the Office for National Statistics says.

Tip

We’re going to mix in the London’s MSOA ‘Atlas’ from the London Data Store. I
would strongly suggest that you have a look around the London Data Store as
you develop your thinking for the group assessment – you will likely find useful
additional data there!

Once you see how we deal with this MSOA Atlas data you will be in a position to work
with any other similarly complex (in terms of the headings and indexes) data set. If
you’re feeling particularly ambitious you can actually do this same work at the LSOA
scale using the LSOA Atlas and LSOA boundaries… the process should be the same,
though you will have smaller samples in each LSOA than you do in the MSOAs and

2

https://www.ons.gov.uk/methodology/geography/ukgeographies/censusgeographies/census2021geographies
https://data.london.gov.uk/dataset
https://data.london.gov.uk/dataset/lsoa-atlas

calculations will take a bit longer to complete. You could also search on the ONS
Census web site for data from 2021.

There is a CSV file for the MSOA Atlas that would be easier to work with; however,
the Excel file is useful for demonstrating how to work with multi-level indexes (an
extension of last week’s work). Notice that belowwe do two new things when reading
the XLS file:

1. We have to specify a sheet name because the file contains multiple sheets.
2. We have to specify not just one header, we actually have to specify three of

them which generates a multi-level index (row 0 is the top-level, row 1 is the
second-level, etc.).

2.1 Load MSOA Excel File

Difficulty level: Low.

You might like to load the cached copy of the file into Excel so that you can see how
the next bit works. You can find the rest of the MSOA Atlas here.

src_url = 'https://data.london.gov.uk/download/msoa-atlas/39fdd8eb-e977-4d32-85a4-f65b92f29dcb/msoa-data.xls'
dest_path = os.path.join('data','msoa')

Question

excel_atlas = pd.read_excel(
cache_data(src_url, dest_path),
???, # Which sheet is the data in?
header=[0,1,2]) # Where are the column names... there's three of them!

Answer

excel_atlas = pd.read_excel(
cache_data(src_url, dest_path),
sheet_name='iadatasheet1', # Which sheet is the data in?
header=[0,1,2]) # Where are the column names... there's three of them!

Found data/msoa/msoa-data.xls locally!
Size is 2 MB (1,979,904 bytes)

Notice the format of the output and notice that all of the empty cells in the Excel
sheet have come through as Unnamed: <col_no>_level_<level_no>:

excel_atlas.head(1)

3

https://data.london.gov.uk/dataset/msoa-atlas

Unnamed: 0_level_0 Unnamed: 1_level_0 Age Structure (2011 Census) Mid-year Estimate totals ... Road Casualties
Unnamed: 0_level_1 Unnamed: 1_level_1 All Ages 0-15 16-29 30-44 45-64 65+ Working-age All Ages ... 2010 2011 2012
MSOA Code MSOA Name Unnamed: 2_level_2 Unnamed: 3_level_2 Unnamed: 4_level_2 Unnamed: 5_level_2 Unnamed: 6_level_2 Unnamed: 7_level_2 Unnamed: 8_level_2 2002 ... Slight 2010 Total Fatal Serious Slight 2011 Total Fatal Serious Slight 2012 Total

0 E02000001 City of London 001 7375.0 620.0 1665.0 2045.0 2010.0 1035.0 5720.0 7280.0 ... 334.0 374.0 0.0 46.0 359.0 405.0 2.0 51.0 361.0 414.0

print(f"Shape of the MSOA Atlas data frame is: {excel_atlas.shape[0]:,} x {excel_atlas.shape[1]:,}")

You should get: Shape of the MSOA Atlas data frame is: 984 x 207, but how on earth
are you going to access the data?

2.2 Accessing MultiIndexes

Difficulty: Moderate.

The difficulty is conceptual, not technical.

Until now we have understood the pandas index as a single column-like ‘thing’ in a
data frame, but pandas also supports hierarchical and grouped indexes that allow
us to interact with data in more complex ways… should we need it. Generally:

• MultiIndex == hierarchical index on columns
• DataFrameGroupBy == iterable pseudo-hierarchical index on rows

� Connections

We’ll be looking at Grouping Data in much more detail in next week, so the
main thing to remember is that grouping is for rows, multi-indexing is about
columns.

2.2.1 Direct Access

Of course, oneway to get at the data is to use .iloc[...] since that refers to columns
by position and ignores the complexity of the index. Try printing out the the first five
rows of the first column using iloc:

excel_atlas.iloc[???]

You should get:

0 E02000001
1 E02000002
2 E02000003
3 E02000004
4 E02000005
Name: (Unnamed: 0_level_0, Unnamed: 0_level_1, MSOA Code), dtype: object

4

https://jreades.github.io/fsds/sessions/week9.html#lectures

2.2.2 Named Access

But to do it by name is a little trickier:

excel_atlas.columns.tolist()[:5]

[('Unnamed: 0_level_0', 'Unnamed: 0_level_1', 'MSOA Code'),
('Unnamed: 1_level_0', 'Unnamed: 1_level_1', 'MSOA Name'),
('Age Structure (2011 Census)', 'All Ages', 'Unnamed: 2_level_2'),
('Age Structure (2011 Census)', '0-15', 'Unnamed: 3_level_2'),
('Age Structure (2011 Census)', '16-29', 'Unnamed: 4_level_2')]

Notice how asking for the first five columns has given us a list of… what exactly?

Question
So to get the same output by column name what do you need to copy from above:

excel_atlas.loc[0:5, ???]

Answer

excel_atlas.loc[0:5, ('Unnamed: 0_level_0','Unnamed: 0_level_1','MSOA Code')]

0 E02000001
1 E02000002
2 E02000003
3 E02000004
4 E02000005
5 E02000007
Name: (Unnamed: 0_level_0, Unnamed: 0_level_1, MSOA Code), dtype: object

The answer is really awkward, so we’re going to look for a better way…

2.2.3 Grouped Access

Despite this, one way that MultiIndexes can be useful is for accessing column-slices
from a ‘wide’ dataframe. We can, for instance, select all of the Age Structure columns
in one go and it will be simpler than what we did above.

excel_atlas.loc[0:5, ('Age Structure (2011 Census)')]

All Ages 0-15 16-29 30-44 45-64 65+ Working-age
Unnamed: 2_level_2 Unnamed: 3_level_2 Unnamed: 4_level_2 Unnamed: 5_level_2 Unnamed: 6_level_2 Unnamed: 7_level_2 Unnamed: 8_level_2

0 7375.0 620.0 1665.0 2045.0 2010.0 1035.0 5720.0

5

All Ages 0-15 16-29 30-44 45-64 65+ Working-age
Unnamed: 2_level_2 Unnamed: 3_level_2 Unnamed: 4_level_2 Unnamed: 5_level_2 Unnamed: 6_level_2 Unnamed: 7_level_2 Unnamed: 8_level_2

1 6775.0 1751.0 1277.0 1388.0 1258.0 1101.0 3923.0
2 10045.0 2247.0 1959.0 2300.0 2259.0 1280.0 6518.0
3 6182.0 1196.0 1277.0 1154.0 1543.0 1012.0 3974.0
4 8562.0 2200.0 1592.0 1995.0 1829.0 946.0 5416.0
5 8791.0 2388.0 1765.0 1867.0 1736.0 1035.0 5368.0

2.2.4 Understanding Levels

This works because the MultiIndex tracks the columns using levels, with level 0 at
the ‘top’ and level 2 (in our case) at the bottom. These are the unique values for the
top level (‘row 0’):

excel_atlas.columns.levels[0]

Index(['Adults in Employment (2011 Census)', 'Age Structure (2011 Census)',
'Car or van availability (2011 Census)',
'Central Heating (2011 Census)', 'Country of Birth (2011)',
'Dwelling type (2011)', 'Economic Activity (2011 Census)',
'Ethnic Group (2011 Census)', 'Health (2011 Census)', 'House Prices',

'Household Composition (2011)', 'Household Income Estimates (2011/12)',
'Household Language (2011)', 'Households (2011)', 'Incidence of Cancer',

'Income Deprivation (2010)', 'Land Area', 'Life Expectancy',
'Lone Parents (2011 Census)', 'Low Birth Weight Births (2007-2011)',
'Mid-year Estimate totals', 'Mid-year Estimates 2012, by age',
'Obesity', 'Population Density', 'Qualifications (2011 Census)',
'Religion (2011)', 'Road Casualties', 'Tenure (2011)',
'Unnamed: 0_level_0', 'Unnamed: 1_level_0'],

dtype='object')

These are the values for those levels across the actual columns in the data frame,
notice the repeated ‘Age Structure (2011 Census)’:

excel_atlas.columns.get_level_values(0)[:10]

Index(['Unnamed: 0_level_0', 'Unnamed: 1_level_0',
'Age Structure (2011 Census)', 'Age Structure (2011 Census)',
'Age Structure (2011 Census)', 'Age Structure (2011 Census)',
'Age Structure (2011 Census)', 'Age Structure (2011 Census)',
'Age Structure (2011 Census)', 'Mid-year Estimate totals'],

dtype='object')

And here are the values for the second level of the index (‘row 1’ in the Excel file):

excel_atlas.columns.get_level_values(1)[:10]

6

Index(['Unnamed: 0_level_1', 'Unnamed: 1_level_1', 'All Ages', '0-15', '16-29',
'30-44', '45-64', '65+', 'Working-age', 'All Ages'],

dtype='object')

By extension, if we drop a level 0 index then all of the columns that it supports at
levels 1 and 2 are also dropped: so when we drop Mid-year Estimate totals from
level 0 then all 11 of the ‘Mid-year Estimate totals (2002…2012)’ columns are dropped
in one go.

excel_atlas[['Mid-year Estimate totals']].head(3)

Mid-year Estimate totals
All Ages
2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

0 7280.0 7115.0 7118.0 7131.0 7254.0 7607.0 7429.0 7472.0 7338.0 7412.0 7604.0
1 6333.0 6312.0 6329.0 6341.0 6330.0 6323.0 6369.0 6570.0 6636.0 6783.0 6853.0
2 9236.0 9252.0 9155.0 9072.0 9144.0 9227.0 9564.0 9914.0 10042.0 10088.0 10218.0

test = excel_atlas.drop(columns=['Mid-year Estimate totals'], axis=1, level=0)

print(f"Excel source had {excel_atlas.shape[1]} columns.")
print(f"Test now has {test.shape[1]} columns.")

Excel source had 207 columns.
Test now has 196 columns.

Tidy up if the variable exists
if 'test' in locals():

del(test)

2.2.5 Questions

• What data type is used for storing/accessing MultiIndexes?
• Why is this is the appropriate data type?
• How (conceptually) are the header rows in Excel are mapped on to levels in
pandas?

2.3 Tidying Up

Difficulty level: Low

Although there’s a lot of dealing with column names.

7

2.3.1 Dropping Named Levels

There’s a lot of data in the data frame that we don’t need for our Airbnb work, so
let’s go a bit further with the dropping of column-groups using the MultiIndex.

to_drop = ['Mid-year Estimate totals','Mid-year Estimates 2012, by age','Religion (2011)',
'Land Area','Lone Parents (2011 Census)','Central Heating (2011 Census)','Health (2011 Census)',
'Low Birth Weight Births (2007-2011)','Obesity','Incidence of Cancer','Life Expectancy',
'Road Casualties']

tidy = excel_atlas.drop(to_drop, axis=1, level=0)
print(f"Shape of the MSOA Atlas data frame is now: {tidy.shape[0]} x {tidy.shape[1]}")

Shape of the MSOA Atlas data frame is now: 984 x 111

This should drop you down to 984 x 111. Notice below that the multi-level index has
not changed but the multi-level values remaining have!

print(f"There are {len(tidy.columns.levels[0].unique())} categories.") # The categories
print(f"But only {len(tidy.columns.get_level_values(0).unique())} values.") # The actual values

There are 30 categories.
But only 18 values.

2.3.2 Selecting Columns using a List Comprehension

Now we need to drop all of the percentages from the data set. These can be found
at level 1, though they are specified in a number of different ways so you’ll need to
come up with a way to find them in the level 1 values using a list comprehension…

I’d suggest looking for: “(%)”, “%”, and “Percentages”. You may need to check both
start and end of the string. You could also use a regular expression here instead
of multiple tests. Either way works, but have a think about the tradeoffs between
intelligibility, speed, and what you understand…

Question
Selection using multiple logical tests:

to_drop = [x for x in tidy.columns.get_level_values(1) if (???)]
print(to_drop)

Selection using a regular expression:

print([x for x in tidy.columns.get_level_values(1) if re.search(???, x)])

Answer

8

to_drop = [x for x in tidy.columns.get_level_values(1) if (
x.endswith("(%)") or x.startswith("%") or x.endswith("Percentages") or x.endswith("%"))]

print(to_drop)

['Percentages', 'Percentages', 'Percentages', 'Percentages', 'Percentages', 'White (%)', 'Mixed/multiple ethnic groups (%)', 'Asian/Asian British (%)', 'Black/African/Caribbean/Black British (%)', 'Other ethnic group (%)', 'BAME (%)', 'United Kingdom (%)', 'Not United Kingdom (%)', '% of people aged 16 and over in household have English as a main language', '% of households where no people in household have English as a main language', 'Owned: Owned outright (%)', 'Owned: Owned with a mortgage or loan (%)', 'Social rented (%)', 'Private rented (%)', 'Household spaces with at least one usual resident (%)', 'Household spaces with no usual residents (%)', 'Whole house or bungalow: Detached (%)', 'Whole house or bungalow: Semi-detached (%)', 'Whole house or bungalow: Terraced (including end-terrace) (%)', 'Flat, maisonette or apartment (%)', 'Economically active %', 'Economically inactive %', '% of households with no adults in employment: With dependent children', '% living in income deprived households reliant on means tested benefit', '% of people aged over 60 who live in pension credit households', 'No cars or vans in household (%)', '1 car or van in household (%)', '2 cars or vans in household (%)', '3 cars or vans in household (%)', '4 or more cars or vans in household (%)']

print([x for x in tidy.columns.get_level_values(1) if re.search("(?:%|Percentages)", x)])

['Percentages', 'Percentages', 'Percentages', 'Percentages', 'Percentages', 'White (%)', 'Mixed/multiple ethnic groups (%)', 'Asian/Asian British (%)', 'Black/African/Caribbean/Black British (%)', 'Other ethnic group (%)', 'BAME (%)', 'United Kingdom (%)', 'Not United Kingdom (%)', '% of people aged 16 and over in household have English as a main language', '% of households where no people in household have English as a main language', 'Owned: Owned outright (%)', 'Owned: Owned with a mortgage or loan (%)', 'Social rented (%)', 'Private rented (%)', 'Household spaces with at least one usual resident (%)', 'Household spaces with no usual residents (%)', 'Whole house or bungalow: Detached (%)', 'Whole house or bungalow: Semi-detached (%)', 'Whole house or bungalow: Terraced (including end-terrace) (%)', 'Flat, maisonette or apartment (%)', 'Economically active %', 'Economically inactive %', '% of households with no adults in employment: With dependent children', '% living in income deprived households reliant on means tested benefit', '% of people aged over 60 who live in pension credit households', 'No cars or vans in household (%)', '1 car or van in household (%)', '2 cars or vans in household (%)', '3 cars or vans in household (%)', '4 or more cars or vans in household (%)']

With both you should get:

['Percentages',
'Percentages',
'Percentages',
'Percentages',
'Percentages',
'White (%)',
'Mixed/multiple ethnic groups (%)',
'Asian/Asian British (%)',
'Black/African/Caribbean/Black British (%)',
'Other ethnic group (%)',
'BAME (%)',
'United Kingdom (%)',
'Not United Kingdom (%)',
'% of people aged 16 and over in household have English as a main language',
'% of households where no people in household have English as a main language',
'Owned: Owned outright (%)',
'Owned: Owned with a mortgage or loan (%)',
'Social rented (%)',
'Private rented (%)',
'Household spaces with at least one usual resident (%)',
'Household spaces with no usual residents (%)',
'Whole house or bungalow: Detached (%)',
'Whole house or bungalow: Semi-detached (%)',
'Whole house or bungalow: Terraced (including end-terrace) (%)',
'Flat, maisonette or apartment (%)',
'Economically active %',
'Economically inactive %',
'% of households with no adults in employment: With dependent children',
'% living in income deprived households reliant on means tested benefit',
'% of people aged over 60 who live in pension credit households',
'No cars or vans in household (%)',
'1 car or van in household (%)',
'2 cars or vans in household (%)',
'3 cars or vans in household (%)',
'4 or more cars or vans in household (%)']

9

� Connections

See how regular expressions keep coming baaaaaaaaack? That said, you can
also often make use of simple string functions like startswith and endswith
for this problem.

2.3.3 Drop by Level

You now need to drop these columns using the level keyword as part of your drop
command. You have plenty of examples of how to drop values in place, but I’d sug-
gest first getting the command correct (maybe duplicate the cell below and change
the code so that the result is saved to a dataframe called test before overwriting
tidy?) and then saving the change.

Question

tidy = tidy.drop(to_drop, axis=1, level=???)
print(f"Shape of the MSOA Atlas data frame is now: {tidy.shape[0]} x {tidy.shape[1]}")

Answer

tidy.drop(to_drop, axis=1, level=1, inplace=True)
print(f"Shape of the MSOA Atlas data frame is now: {tidy.shape[0]} x {tidy.shape[1]}")

Shape of the MSOA Atlas data frame is now: 984 x 76

The data frame should now be 984 x 76. This is a bitmore manageable though still a
lot of data columns. Depending on what you decide to do for your final project you
might want to revisit some of the columns that we dropped above…

2.3.4 Flattening the Index

Although this ia big improvement, you’ll have trouble saving or linking this data to
other inputs. The problem is that Level 2 of the multi-index is mainly composed of
‘Unnamed’ values and so we need to merge it with Level 1 to simplify our data frame,
and then merge that with level 0…

tidy.columns.values[:3]

array([('Unnamed: 0_level_0', 'Unnamed: 0_level_1', 'MSOA Code'),
('Unnamed: 1_level_0', 'Unnamed: 1_level_1', 'MSOA Name'),
('Age Structure (2011 Census)', 'All Ages', 'Unnamed: 2_level_2')],
dtype=object)

Let’s use code to sort this out!

10

https://jreades.github.io/fsds/sessions/week7.html#lectures

new_cols = []
for c in tidy.columns.values:

#print(f"Column label: {c}")
l1 = f"{c[0]}"
l2 = f"{c[1]}"
l3 = f"{c[2]}"

The new column label
clabel = ''

Assemble new label from the levels
if not l1.startswith("Unnamed"):

l1 = l1.replace(" (2011 Census)",'').replace(" (2011)",'').replace("Household ",'').replace("House Prices",'').replace("Car or van availability",'Vehicles').replace(' (2011/12)','')
l1 = l1.replace('Age Structure','Age').replace("Ethnic Group",'').replace('Dwelling type','').replace('Income Estimates','')
clabel += l1

if not l2.startswith("Unnamed"):
l2 = l2.replace("Numbers",'').replace(" House Price (£)",'').replace("Highest level of qualification: ",'').replace("Annual Household Income (£)",'hh Income').replace('Whole house or bungalow: ','').replace(' qualifications','')
l2 = l2.replace('At least one person aged 16 and over in household has English as a main language',"1+ English as a main language").replace("No people in household have English as a main language","None have English as main language")
clabel += ('-' if clabel != '' else '') + l2

if not l3.startswith("Unnamed"):
clabel += ('-' if clabel != '' else '') + l3

Replace other commonly-occuring verbiage that inflates column name width
clabel = clabel.replace('--','-').replace(" household",' hh').replace('Owned: ','')

#clabel = clabel.replace(' (2011 Census)','').replace(' (2011)','').replace('Sales - 2011.1','Sales - 2012')
#clabel = clabel.replace('Numbers - ','').replace(' (£)','').replace('Car or van availability','Vehicles')
#clabel = clabel.replace('Household Income Estimates (2011/12) - ','').replace('Age Structure','Age')

new_cols.append(clabel)

new_cols

['MSOA Code',
'MSOA Name',
'Age-All Ages',
'Age-0-15',
'Age-16-29',
'Age-30-44',
'Age-45-64',
'Age-65+',
'Age-Working-age',
'Households-All Households',
'Composition-Couple hh with dependent children',
'Composition-Couple hh without dependent children',
'Composition-Lone parent hh',
'Composition-One person hh',
'Composition-Other hh Types',
'White',

11

'Mixed/multiple ethnic groups',
'Asian/Asian British',
'Black/African/Caribbean/Black British',
'Other ethnic group',
'BAME',
'Country of Birth-United Kingdom',
'Country of Birth-Not United Kingdom',
'Language-1+ English as a main language',
'Language-None have English as main language',
'Tenure-Owned outright',
'Tenure-Owned with a mortgage or loan',
'Tenure-Social rented',
'Tenure-Private rented',
'Household spaces with at least one usual resident',
'Household spaces with no usual residents',
'Detached',
'Semi-detached',
'Terraced (including end-terrace)',
'Flat, maisonette or apartment',
'Population Density-Persons per hectare (2012)',
'Median-2005',
'Median-2006',
'Median-2007',
'Median-2008',
'Median-2009',
'Median-2010',
'Median-2011',
'Median-2012',
'Median-2013 (p)',
'Sales-2005',
'Sales-2006',
'Sales-2007',
'Sales-2008',
'Sales-2009',
'Sales-2010',
'Sales-2011',
'Sales-2011.1',
'Sales-2013(p)',
'Qualifications-No',
'Qualifications-Level 1',
'Qualifications-Level 2',
'Qualifications-Apprenticeship',
'Qualifications-Level 3',
'Qualifications-Level 4 and above',
'Qualifications-Other',
'Qualifications-Schoolchildren and full-time students: Age 18 and over',
'Economic Activity-Economically active: Total',
'Economic Activity-Economically active: Unemployed',
'Economic Activity-Economically inactive: Total',
'Economic Activity-Unemployment Rate',
'Adults in Employment-No adults in employment in hh: With dependent children',
'Total Mean hh Income',

12

'Total Median hh Income',
'Vehicles-No cars or vans in hh',
'Vehicles-1 car or van in hh',
'Vehicles-2 cars or vans in hh',
'Vehicles-3 cars or vans in hh',
'Vehicles-4 or more cars or vans in hh',
'Vehicles-Sum of all cars or vans in the area',
'Vehicles-Cars per hh']

Stop

Make sure you understand what is happening here before just moving on to the
next thing. Try adding print() statements if it will help it to make sense. This
sort of code comes up a lot in the real world.

tidy.columns = new_cols # <- Blow away complex index, replace with simple
tidy.head()

MSOA Code MSOA Name Age-All Ages Age-0-15 Age-16-29 Age-30-44 Age-45-64 Age-65+ Age-Working-age Households-All Households ... Adults in Employment-No adults in employment in hh: With dependent children Total Mean hh Income Total Median hh Income Vehicles-No cars or vans in hh Vehicles-1 car or van in hh Vehicles-2 cars or vans in hh Vehicles-3 cars or vans in hh Vehicles-4 or more cars or vans in hh Vehicles-Sum of all cars or vans in the area Vehicles-Cars per hh

0 E02000001 City of London 001 7375.0 620.0 1665.0 2045.0 2010.0 1035.0 5720.0 4385.0 ... 38.0 59728.481886 46788.295472 3043.0 1100.0 173.0 51.0 18.0 1692.0 0.385861
1 E02000002 Barking and Dagenham 001 6775.0 1751.0 1277.0 1388.0 1258.0 1101.0 3923.0 2713.0 ... 319.0 31788.185996 27058.703760 1020.0 1186.0 424.0 66.0 17.0 2305.0 0.849613
2 E02000003 Barking and Dagenham 002 10045.0 2247.0 1959.0 2300.0 2259.0 1280.0 6518.0 3834.0 ... 268.0 43356.931547 36834.528738 1196.0 1753.0 691.0 155.0 39.0 3766.0 0.982264
3 E02000004 Barking and Dagenham 003 6182.0 1196.0 1277.0 1154.0 1543.0 1012.0 3974.0 2318.0 ... 122.0 46701.436554 39668.206433 556.0 1085.0 515.0 128.0 34.0 2650.0 1.143227
4 E02000005 Barking and Dagenham 004 8562.0 2200.0 1592.0 1995.0 1829.0 946.0 5416.0 3183.0 ... 307.0 34293.820288 29155.683536 1080.0 1423.0 551.0 109.0 20.0 2937.0 0.922714

You might want to have a look at what the code below drops first before just running
it… remember that you can pull apart any complex code into pieces:

tidy['MSOA Code'].isna()
tidy[tidy['MSOA Code'].isna()].index

Index([983], dtype='int64')

tidy.drop(index=tidy[tidy['MSOA Code'].isna()].index, inplace=True)

2.4 Add Inner/Outer London Mapping

Difficulty: Moderate, since I’m not giving you many clues.

� Connections

We touched on lambda functions last week; it’s a ‘trivial’ function that we don’t
even want to bother defining with def. We also used the lambda function in

13

the context of apply so this is just another chance to remind yourself how this
works. This is quite advanced Python, so don’t panic if you don’t get it right
away and have to do some Googling…

We want to add the borough name and a ‘subregion’ name. We already have the
borough name buried in a separate column, so step 1 is to extract that from the
MSOA Name. Step 2 is to use the borough name as a lookup to the subregion name
using a lambda function. The format for a lambda function is usually lambda x:
<code that does something with x and returns a value>. Hint: you’ve got a
dictionary and you know how to use it!

2.4.1 Add Boroughs

We first need to extract the borough names from one of the existing fields in the data
frame… a regex that does replacement would be fastest and easiest: focus on what
you don’t need from the MSOA Name string and replacing that using a regex…

Question

tidy['Borough'] = tidy['MSOA Name'].???
tidy.Borough.unique()

Answer

tidy['Borough'] = tidy['MSOA Name'].str.replace(r' \d+$','',regex=True)
tidy.Borough.unique()

array(['City of London', 'Barking and Dagenham', 'Barnet', 'Bexley',
'Brent', 'Bromley', 'Camden', 'Croydon', 'Ealing', 'Enfield',
'Greenwich', 'Hackney', 'Hammersmith and Fulham', 'Haringey',
'Harrow', 'Havering', 'Hillingdon', 'Hounslow', 'Islington',
'Kensington and Chelsea', 'Kingston upon Thames', 'Lambeth',
'Lewisham', 'Merton', 'Newham', 'Redbridge',
'Richmond upon Thames', 'Southwark', 'Sutton', 'Tower Hamlets',
'Waltham Forest', 'Wandsworth', 'Westminster'], dtype=object)

You should get:

array(['City of London', 'Barking and Dagenham', 'Barnet', 'Bexley',
'Brent', 'Bromley', 'Camden', 'Croydon', 'Ealing', 'Enfield',
'Greenwich', 'Hackney', 'Hammersmith and Fulham', 'Haringey',
'Harrow', 'Havering', 'Hillingdon', 'Hounslow', 'Islington',
'Kensington and Chelsea', 'Kingston upon Thames', 'Lambeth',
'Lewisham', 'Merton', 'Newham', 'Redbridge',
'Richmond upon Thames', 'Southwark', 'Sutton', 'Tower Hamlets',
'Waltham Forest', 'Wandsworth', 'Westminster'], dtype=object)

14

2.4.2 Map Boroughs to Subregions

And now you need to understand how to apply the mapping ot the Borough field
using a lambda function. It’s fairly straightforward once you know the syntax: just a
dictionary lookup. But as usual, you might want to first create a new cell and experi-
ment with the output from the apply function before using it to write the Subregion
field of the data frame…

mapping = {}
for b in ['Enfield','Waltham Forest','Redbridge','Barking and Dagenham','Havering','Greenwich','Bexley']:

mapping[b]='Outer East and North East'
for b in ['Haringey','Islington','Hackney','Tower Hamlets','Newham','Lambeth','Southwark','Lewisham']:

mapping[b]='Inner East'
for b in ['Bromley','Croydon','Sutton','Merton','Kingston upon Thames']:

mapping[b]='Outer South'
for b in ['Wandsworth','Kensington and Chelsea','Hammersmith and Fulham','Westminster','Camden','City of London']:

mapping[b]='Inner West'
for b in ['Richmond upon Thames','Hounslow','Ealing','Hillingdon','Brent','Harrow','Barnet']:

mapping[b]='Outer West and North West'

Question

tidy['Subregion'] = tidy.Borough.apply(???)

Answer

tidy['Subregion'] = tidy.Borough.apply(lambda x: mapping[x])

2.4.3 And Save

There’s a little snipped of useful code to work out here: we need to check if the clean
directory exists in the data directory; if we don’t then the tidy.to_parquet() call will
fail.

if not os.path.exists(os.path.join('data','clean')):
os.makedirs(os.path.join('data','clean'))

tidy.to_parquet(os.path.join('data','clean','MSOA_Atlas.parquet'))
print("Done.")

Done.

2.4.4 Questions

• What are the advantages to apply and lambda functions over looping and
named functions?

• When might you choose a named function over a lambda function?

15

2.5 Merge Data & Geography

Difficulty: Low, except for plotting.

� Connections

We’ll cover joins (of which a merge is just one type) in the final week’s lectures,
but between what you’d done in GIS and what we have here there should be
enough here for you to start being able to make sense of how they work so that
you don’t have to wait until Week 10 to think about how this could help you
with your Group Assessment.

First, we need to download theMSOA source file, which is a zipped archive of a Shape-
file:

Oh look, we can read a Shapefile without needing to unzip it!
msoas = gpd.read_file(

cache_data('https://github.com/jreades/fsds/blob/master/data/src/Middle_Layer_Super_Output_Areas__December_2011__EW_BGC_V2-shp.zip?raw=true',
os.path.join('data','geo')), driver='ESRI Shapefile')

Found data/geo/Middle_Layer_Super_Output_Areas__December_2011__EW_BGC_V2-shp.zip locally!
Size is 7 MB (7,381,177 bytes)

2.5.1 Identifying Matching Columns

Looking at the first few columns of each data frame, which one might allow us to link
the two files together? You’ve done this in GIS. Remember: the column names don’t
need to match for us to use them in a join, it’s the values that matter.

print(f"Column names: {', '.join(tidy.columns.tolist()[:5])}")
tidy.iloc[:3,:5]

Column names: MSOA Code, MSOA Name, Age-All Ages, Age-0-15, Age-16-29

MSOA Code MSOA Name Age-All Ages Age-0-15 Age-16-29

0 E02000001 City of London 001 7375.0 620.0 1665.0
1 E02000002 Barking and Dagenham 001 6775.0 1751.0 1277.0
2 E02000003 Barking and Dagenham 002 10045.0 2247.0 1959.0

2.5.2 Merge

One more thing: if you’ve got more than one choice I’d always go with a code over a
name because one is intended for matching and other is not…

16

https://jreades.github.io/fsds/sessions/week10.html#lectures

Question

gdf = pd.merge(msoas, tidy, left_on=???, right_on=???, how='inner')
gdf = gdf.drop(columns=['MSOA11CD','MSOA11NM','OBJECTID'])

print(f"Final MSOA Atlas data frame has shape {gdf.shape[0]:,} x {gdf.shape[1]}")

Answer

gdf = pd.merge(msoas, tidy, left_on='MSOA11CD', right_on='MSOA Code', how='inner')
gdf = gdf.drop(columns=['MSOA11CD','MSOA11NM','OBJECTID'])

print(f"Final MSOA Atlas data frame has shape {gdf.shape[0]:,} x {gdf.shape[1]}")

Final MSOA Atlas data frame has shape 983 x 86

You should get Final data frame has shape 983 x 86.

2.5.3 Plot Choropleth

Let’s plot the median income in 2011 column using the plasma colour ramp… The rest
is to show you how to customise a legend.

col = 'Median-2011'
fig = gdf.plot(column=???, cmap='???',

scheme='FisherJenks', k=7, edgecolor='None',
legend=True, legend_kwds={'frameon':False, 'fontsize':8},
figsize=(8,7));

plt.title(col.replace('-',' '));

Now to modify the legend: googling "geopandas format legend"
brings me to: https://stackoverflow.com/a/56591102/4041902
leg = fig.get_legend()
leg._loc = 3

for lbl in leg.get_texts():
label_text = lbl.get_text()
[low, hi] = label_text.split(', ')
new_text = f'£{float(low):,.0f} - £{float(hi):,.0f}'
lbl.set_text(new_text)

plt.show();

17

2.5.4 Save

gdf.to_geoparquet(os.path.join('data','geo','MSOA_Atlas.geoparquet'))

2.5.5 Questions

• Try changing the colour scheme, classification scheme, and number of classes
to see if you feel there’s a better opeion than the one shown above… Copy the
cell (click on anywhere outside the code and then hit C to copy. Then click on
this cell once, and hit V to paste.

3 Splitting into Test & Train

Note

🔗 Connections: Here you will be using a standard approach in Machine Learningknown as _test/train split_, although we _won't_ be doing any actual ML (😅). Here we are just going to use it to explore some issues raised by normalisation and standardisation in [this week's lectures](https://jreades.github.io/fsds/sessions/week8.html#lectures).

A standard approach to Machine Learning, and something that is becoming more
widely used elsewhere, is the splitting of a large data into set into testing and training
components. Typically, you would take 80-90% of your data to ‘train’ your algorithm
and withold between 10-20% for validation (‘testing’). An even ‘stricter’ approach, in
the sense of trying to ensure the robustness of your model against outlier effects, is
cross validation such as k-folds cross-validation.

Sci-Kit Learn is probably the most important reason Python has become the de fact
language of data science. Test/train-split is used when to avoid over-fitting when we
are trying to predict something; so here Sci-Kit Learn expects that you’ll have an X
which is your predictors (the inputs to your model) and a y which is the thing you’re
trying to predict (because: 𝑦 = 𝛽𝑋 + 𝜖).
We’re not building a model here (that’s for Term 2!) so we’ll just ‘pretend’ that we’re
trying to predict the price of a listing and will set that up as our y data set so that
we can see how the choice of normalisation/standardisation technique affects the
robustness of the model against ‘new’ data. Notice too that you can pass a data
frame directly to Sci-Kit Learn and it will split it for you.

3.1 Reload

Tip

In future 'runs' of this notebook you can now just pick up here and skip all of Task 1.

On subsequent runs of this notebook you might just want to start here!

Notice this handy code: we check if the data is already
in memory. And notice this is just a list comprehension
to see what is locally loaded.

18

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.cross_validate.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.KFold.html

if 'gdf' not in locals():
gdf = gpd.read_parquet(os.path.join('data','geo','MSOA_Atlas.geoparquet'))

print(gdf.shape)

categoricals = ['Borough','Subregion']
for c in categoricals:

gdf[c] = gdf[c].astype('category')

3.2 Split

Difficulty: Low!

For our purposes this is a little bit overkill as you could also use pandas’
sample(frac=0.2) and the indexes, but it’s useful to see how this works. You
use test/train split to get four data sets out: the training data gives you two
(predictors + target as separate data sets) and the testing data gives you two as
well (predictors + target as separate data sets). These are sized accoridng to the
test_size specfied in the test_train_split parameters.

from sklearn.model_selection import train_test_split

pdf = gdf['Median-2011'].copy() # pdf for Median *P*rice b/c we need *something*

df == *data* frame (a.k.a. predictors or independent variables)
pr == *predicted* value (a.k.a. dependent variable)
Notice we don't want the median price included in our training data
df_train, df_test, pr_train, pr_test = train_test_split(

gdf.drop(columns=['Median-2011']), pdf, test_size=0.2, random_state=44)

Below you should see that the data has been split roughly on the basis of the
test_size parameter.

print(f"Original data size: {gdf.shape[0]:,} x {gdf.shape[1]}")
print(f" Training data size: {df_train.shape[0]:,} x {df_train.shape[1]} ({(df_train.shape[0]/gdf.shape[0])*100:.0f}%)")
print(f" Testing data size: {df_test.shape[0]:,} x {df_test.shape[1]} ({(df_test.shape[0]/gdf.shape[0])*100:.0f}%)")

Also notice the indexes of each pair of data sets match:

print(", ".join([str(x) for x in df_train.index[:10]]))
print(", ".join([str(x) for x in pr_train.index[:10]]))

19

3.3 Plot Test/Train Data

Difficulty: Low, but important!

boros = gpd.read_file(os.path.join('data','geo','Boroughs.gpkg'))

f,axes = plt.subplots(1,2, figsize=(12,5))
df_train.plot(ax=???)
df_test.plot(ax=???)
boros.plot(ax=???, facecolor='none', edgecolor='r', linewidth=.5, alpha=0.4)
boros.plot(ax=???, facecolor='none', edgecolor='r', linewidth=.5, alpha=0.4)
axes[0].set_title('Training Data')
axes[1].set_title('Testing Data');
axes[0].set_ylim(150000,210000)
axes[1].set_ylim(150000,210000)
axes[0].set_xlim(500000,565000)
axes[1].set_xlim(500000,565000)
axes[1].set_yticks([]);

3.3.1 Questions

• Why might it be useful to produce a map of a test/train split?
• Whymight it mattermore if you were dealing with user locations or behaviours?

4 Normalisation

The developers of SciKit-Learn define normalisation as “scaling individual samples
to have unit norm.” There are a lot of subtleties to this when you start dealing with
‘sparse’ data, but for the most part it’s worthwhile to think of this as a rescaling of
the raw data to have similar ranges in order achieve some kind of comparison. This
is such a common problem that sklearn offers a range of such (re)scalers including:
MinMaxScaler.

Let’s see what effect this has on the data!

Sets some handy 'keywords' to tweak the Seaborn plot
kwds = dict(s=7,alpha=0.95,edgecolor="none")

Set the *hue order* so that all plots have the *same*
colour on the Subregion
ho = ['Inner East','Inner West','Outer West and North West','Outer South','Outer East and North East']

20

https://scikit-learn.org/
https://scikit-learn.org/stable/modules/preprocessing.html#normalization

4.1 Select Columns

Difficulty: Low.

One thing you’ll need to explain is why I keep writing df[cols+['Subregion'] and
why I don’t just add it to the cols variable at the start? Don’t try to answer this now,
get through the rest of Tasks 3 and 4 and see what you think.

cols = ['Tenure-Owned outright', 'Tenure-Owned with a mortgage or loan',
'Tenure-Social rented', 'Tenure-Private rented']

Answer: one part of the answer is that it makes it easy to change the columns we se-
lect without having to remember to keep Subregion, but the more important reason
is that it allows us to re-use this ‘definition’ of cols elsewhere throughout the rest
of this practical without needing to remember to remove Subregion.

tr_raw = df_train[cols+['Subregion']].copy() # train raw
tst_raw = df_test[cols+['Subregion']].copy() # test raw

4.2 Fit to Data

Difficulty: Moderate if you want to understand what reshape is doing.

Fit the training data:

from sklearn.preprocessing import MinMaxScaler

Notice what this is doing! See if you can explain it clearly.
scalers = [???.fit(???[x].values.reshape(-1,1)) for x in cols]

4.3 Apply Transformations

Difficulty: Moderate.

Train:

tr_normed = tr_raw.copy()

for i, sc in enumerate(scalers):
Ditto this -- can you explain what this code is doing
tr_normed[cols[i]] = sc.transform(df_???[cols[i]].values.reshape(-1,1))

Test:

21

tst_normed = tst_raw.copy()

for i, sc in enumerate(scalers):
tst_normed[cols[i]] = sc.transform(df_???[cols[i]].values.reshape(-1,1))

Note

🔗 Connections: You don't _have_ to fully understand the next section, but if you are able to get your head around it then this will seriously help you to prepare for the use of more advanced techniques in modelling and programming.

Check out the properties of tst_normed below. If you’ve understood what the
MinMaxScaler is doing then you should be able to spot something unexpected in the
transformed test outputs. If you’ve really understood this, you’ll see why this result
is problematic formodels. Hint: one way to think of it is an issue of extrapolation.

for c in cols:
print(f" Minimum: {tst_normed[c].min():.4f}")
???

4.4 Plot Distributions

Difficulty: Moderate.

tr_raw.columns = [re.sub('(-|/)',"\n",x) for x in tr_raw.columns.values]
tst_raw.columns = [re.sub('(-|/)',"\n",x) for x in tst_raw.columns.values]
tr_normed.columns = [re.sub('(-|/)',"\n",x) for x in tr_normed.columns.values]
tst_normed.columns = [re.sub('(-|/)',"\n",x) for x in tst_normed.columns.values]

sns.pairplot(data=tr_raw, hue='Subregion', diag_kind='kde', corner=True, plot_kws=kwds, hue_order=ho);

sns.pairplot(data=tr_normed, hue='Subregion', diag_kind='kde', corner=True, plot_kws=kwds, hue_order=ho);

4.4.1 Questions

• Why do I keep writing df[cols+['Subregion']? Why I don’t just add Subregions
to the cols variable at the start?

• What has changed between the two plots (of tr_raw and tr_normed)?
• What is the potential problem that the use of the transformer fitted on
tr_normed to data from tst_normed might cause? Hint: this is why I asked you
to investigate the data in the empty code cell above.

• Can you explainwhat this is doing: [MinMaxScaler().fit(df_train[x].values.reshape(-1,1))
for x in cols]?

• Can you explainwhat this is doing: sc.transform(df_test[cols[i]].values.reshape(-1,1))?

22

5 Standardisation

Standardisation is typically focussed on rescaling data to have amean (ormedian) of
0 and standard deviation or IQR of 1. That these approaches are conceptually tied to
the idea of symmetric, unimodal data such as that encountered in the standard nor-
mal distribution. Rather confusingly, many data scientists will use standardisation
and normalisation largely interchangeably!

col = 'Vehicles-No cars or vans in hh'
tr = df_train[[col]].copy()
tst = df_test[[col]].copy()

5.1 Z-Score Standardisation

Difficulty: Low.

stsc = StandardScaler().fit(tr[col].values.reshape(-1,1))

tr[f"Z. {col}"] = stsc.transform(???)
tst[f"Z. {col}"] = stsc.transform(???)

5.2 Inter-Quartile Standardisation

Difficulty: Low.

rs = ???(quantile_range=(25.0, 75.0)).fit(???)

tr[f"IQR. {col}"] = rs.transform(???)
tst[f"IQR. {col}"] = rs.transform(???)

5.3 Plot Distributions

Note

🔗 Connections: The point of these next plots is simply to show that *linear* transformations (which are 'reversible') is about changing things like the magnitude/scale of our data but doesn't fundamentally change relationships *between* observations.

Difficulty: Low.

sns.jointplot(data=tr, x=f"{col}", y=f"Z. {col}", kind='kde'); # hex probably not the best choice

23

sns.jointplot(data=tr, x=f"{col}", y=f"IQR. {col}", kind='kde'); # hex probably not the best choice

sns.jointplot(data=tr, x=f"Z. {col}", y=f"IQR. {col}", kind='hex'); # hex probably not the best choice

Perhaps a little more useful…

ax = sns.kdeplot(tr[f"Z. {col}"])
sns.kdeplot(tr[f"IQR. {col}"], color='r', ax=ax)
plt.legend(loc='upper right', labels=['Standard', 'Robust']) # title='Foo'
ax.ticklabel_format(useOffset=False, style='plain')
ax.set_xlabel("Standardised Value for No cars or vans in hh")

5.3.1 Questions?

• Can you see the differences between these two rescalers?
• Can you explain why you might want to choose one over the other?

6 Non-Linear Transformations

Note

🔗 Connections: Now *these* transformations are not directly revsersible because they change the actual relationships between observations in the data. We use these when we need to achieve particular 'behaviours' from our data in order to improve our model's 'predictive' ability. Even a simple regression is doing a kind of prediction ($y = \beta X + \epsilon$). You covered these concepts in [this week's lectures](https://jreades.github.io/fsds/sessions/week8.html#lectures).

So transformations are useful when a data series has features that make compar-
isons or analysis difficult, or that affect our ability to intuit meaningful difference.
By manipulating the data using one or more mathematical operations we can some-
times make it more tractable for subsequent analysis. In other words, it’s all about
the context of our data.

24

Figure 1: How tall is tall?

From above, we know the Median Income data are not normally distributed, but can
we work out what distribution best represents Median Income? This can be done by
comparing the shape of the histogram to the shapes of theoretical distributitions.
For example:

• the log-normal distribution
• the exponential distribution
• the Poisson distribution (for non-continuous data)

From looking at those theoretical distributions, we might make an initial guess as to
the type of distribution. There are actuallymany other distributions encountered in
real life data, but these ones are particuarly common. A wider view of this would be
that quantile and power transformations are ways of preserving the rank of values
but lose many of the other features of the relationships that might be preserved by,
for instance, the standard scaler.

In the case of Median Income, taking a log-transform of the data might make it ap-
pear more normal: you do not say that a transformation makes data more normal,
you say either that ‘it allows us to treat the data as normally distributed’ or that ‘the
transformed data follows a log-normal distribution’.

25

https://en.wikipedia.org/wiki/Log-normal_distribution
https://en.wikipedia.org/wiki/Exponential_distribution
https://en.wikipedia.org/wiki/Poisson_distribution
https://scikit-learn.org/stable/modules/preprocessing.html#non-linear-transformation

6.1 The Normal Distribution

Difficulty: Moderate.

Z-scores are often associated with the normal distribution because their interpre-
tation implicitly assumes a normal distribution. Or to put it another way… You can
always calculate z-scores for your data (it’s just a formula applied to data points),
but their intuitive meaning is lost if your data don’t have something like a normal
distribution (or follow the 68-95-99.7 rule).

But… what if our data are non-normal? Well, Just because data are non-normal
doesn’t mean z-scores can’t be calculated (we already did that above); we just have
to be careful what we do with them… and sometimes we should just avoid them
entirely.

6.1.1 Creating a Normal Distribution

Below is a function to create that theoretical normal distribution. See if you can
understand what’s going and add comments to the code to explain what each line
does.

def normal_from_dist(series):
mu = ??? # mean of our data
sd = ??? # standard deviation of our data
n = ??? # count how many observations are in our data
s = np.random.normal(???, ???, ???) #use the parameters of the data just calculated to generate n random numbers, drawn from a normal distributions
return s #return this set of random numbers

To make it easier to understand what the function above is doing, let’s use it! We’ll
use the function to plot both a distribution plot with both histogram and KDE for our
data, and then add a second overplot distplot to the same fig showing the theoretical
normal distribution (in red). We’ll do this in a loop for each of the three variables
we want to examine.

6.1.2 Visual Comparisons

Looking at the output, which of the variables has a roughly normal distribution?
Another way to think about this question is, for which of the variables are the mean
and standard deviation most appropriate as measures of centrality and spread?

Also, how would you determine the meaning of some of the departures from the
normal distribution?

selection = [x for x in df_train.columns.values if x.startswith('Composition')]

for c in selection:
ax = sns.kdeplot(df_train[c])
sns.kdeplot(normal_from_dist(df_train[c]), color='r', fill=True, ax=ax)
plt.legend(loc='upper right', labels=['Observed', 'Normal']) # title='Foo'

26

https://en.wikipedia.org/wiki/68–95–99.7_rule

ax.ticklabel_format(useOffset=False, style='plain')
if ax.get_xlim()[1] > 999999:

plt.xticks(rotation=45)
plt.show()

6.1.3 Questions

• Which, if any, of the variables has a roughly normal distribution? Another way
to think about this question is, for which of the variables are the mean and
standard deviation most appropriate as measures of centrality and spread?

• How might you determine the significance of some of the departures from the
normal distribution?

6.2 Logarithmic Transformations

Difficulty: Moderate.

To create a new series in the data frame containing the natural log of the original
value it’s a similar process to what we’ve done before, but since pandas doesn’t
provide a log-transform operator (i.e. you can’t call df['MedianIncome'].log()) we
need to use the numpy package since pandas data series are just numpy arrays with
some fancy window dressing that makes them even more useful.

Let’s perform the transform then compare to the un-transformed data. Comment
the code below to ensure that you understand what it is doing.

6.2.1 Apply and Plot

cols = ['Median-2012','Total Mean hh Income']

for m in cols:
s = df_train[m] # s == series
ts = ???.???(s) # ts == transformed series

ax = sns.kdeplot(s)
sns.kdeplot(normal_from_dist(s), color='r', fill=True, ax=ax)
plt.legend(loc='upper right', labels=['Observed', 'Normal']) # title also an option
plt.title("Original Data")

USEFUL FORMATTING TRICKS
This turns off scientific notation in the ticklabels
ax.ticklabel_format(useOffset=False, style='plain')
Notice this snippet of code
ax.set_xlabel(ax.get_xlabel() + " (Raw Distribution)")
Notice this little code snippet too
if ax.get_xlim()[1] > 999999:

27

plt.xticks(rotation=45)

plt.show()

ax = sns.kdeplot(ts)
sns.kdeplot(normal_from_dist(ts), color='r', fill=True, ax=ax)
plt.legend(loc='upper right', labels=['Observed', 'Normal'])
ax.ticklabel_format(useOffset=False, style='plain')
ax.set_xlabel(ax.get_xlabel() + " (Logged Distribution)")
if ax.get_xlim()[1] > 999999:

plt.xticks(rotation=45)
plt.title("Log-Transformed Data")
plt.show()

Hopefully, you can see that the transformed data do indeed look ‘more normal’; the
peak of the red and blue lines are closer together and the blue line at the lower
extreme is also closer to the red line, but we can check this by seeing what has
happened to the z-scores.

6.3 Power Transformations

Difficulty: Moderate.

cols = ['Median-2012','Total Mean hh Income']
pt = ???(method='yeo-johnson')

for m in cols:
s = df_train[m] # s == series
ts = pt.fit_transform(s.values.reshape(-1,1))
print(f"Using lambda (transform 'exponent') of {pt.lambdas_[0]:0.5f}")

ax = sns.kdeplot(ts.reshape(-1,))

sns.kdeplot(normal_from_dist(???), color='r', fill=True, ax=ax)
plt.legend(loc='upper right', labels=['Observed', 'Normal'])
ax.ticklabel_format(useOffset=False, style='plain')
ax.set_xlabel(m + " (Transformed Distribution)")
if ax.get_xlim()[1] > 999999: # <-- What does this do?

plt.xticks(rotation=45)
plt.title("Power-Transformed Data")
plt.show();

28

7 Principal Components Analysis

Note

🔗 Connections: This is all about _dimensionality_ and the different ways that we can reduce dimensionality in our data in order to improve our models' robustness and gain a better understanding of whether (or not) there is structure in our data. We'll start with linear decomposition and then look at non-linear decomposition, which we also demonstrated with UMAP last week.

Now we’re going to ask the question: how can we represent our data using a smaller
number of components that capture the variance in the original data. You should
have covered PCA in Quantitative Methods.

7.0.1 Optional Reload

Use this is your data gets messy…

gdf = gpd.read_parquet(os.path.join('data','geo','MSOA_Atlas.geoparquet')).set_index('MSOA Code')
print(gdf.shape)

categoricals = ['Borough','Subregion']
for c in categoricals:

gdf[c] = gdf[c].astype('category')

7.1 Calculating Shares

Difficulty: Hard.

Sadly, there’s no transformer to work this out for you automatically, but let’s start
by converting the raw population and household figures to shares so that our later
dimensionality reduction steps aren’t impacted by the size of the MSOA.

gdf[['Age-All Ages','Households-All Households']].head(5)

7.1.1 Specify Totals Columns

total_pop = gdf['Age-All Ages']
total_hh = gdf['Households-All Households']
total_vec = gdf['Vehicles-Sum of all cars or vans in the area']

29

7.1.2 Specify Columns for Pop or HH Normalisation

pop_cols = ['Age-', 'Composition-', 'Qualifications-', 'Economic Activity-', 'White', 'Mixed/multiple',
'Asian/Asian British', 'Black/African', 'BAME', 'Other ethnic',
'Country of Birth-']

hh_cols = [???, ???, ???, 'Detached', 'Semi-detached', 'Terraced', 'Flat, ']

popre = re.compile(r'^(?:' + "|".join(pop_cols) + r')')
hhre = re.compile(r'^(?:' + "|".join(???) + r')')

7.1.3 Apply to Columns

tr_gdf = gdf.copy()
tr_gdf['Mean hh size'] = tr_gdf['Age-All Ages']/tr_gdf['Households-All Households']

for c in gdf.columns:
print(c)
if popre.match(c):

print(" Normalising by total population.")
tr_gdf[c] = gdf[c]/???

elif ???.match(???):
print(" Normalising by total households.")
tr_gdf[c] = gdf[c]/???

elif c.startswith('Vehicles-') and not c.startswith('Vehicles-Cars per hh'):
print(" Normalising by total vehicles.")
tr_gdf[c] = gdf[c]/???

else:
print(" Passing through.")

7.2 Removing Columns

Difficulty: Moderate.

To perform dimensionality we can only have numeric data. In theory, categorical
data can be converted to numeric and retained, but there are two issues:

1. Nominal data has no innate order so we can’t convert > 2 categories to numbers
and have to convert them to One-Hot Encoded values.

2. A binary (i.e. One-Hot Encoded) variable will account for a lot of variance in the
data because it’s only two values they are 0 and 1!

So in practice, it’s probably a good idea to drop categorical data if you’re planning
to use PCA.

30

7.2.1 Drop Totals Columns

pcadf = tr_gdf.drop(columns=['Age-All Ages', 'Households-All Households',
'Vehicles-Sum of all cars or vans in the area'])

pcadf = pcadf.set_index('MSOA Code')

7.2.2 Drop Non-Numeric Columns

pcadf.select_dtypes(['category','object']).columns

pcadf.drop(columns=pcadf.select_dtypes(['category','object']).columns.to_list(), inplace=True)
pcadf.drop(columns=['BNG_E','BNG_N','geometry', 'LONG', 'LAT','Shape__Are', 'Shape__Len'], inplace=True)

pcadf.columns

7.3 Rescale & Reduce

Difficulty: Moderate.

In order to ensure that our results aren’t dominated by a single scale (e.g. House
Prices!) we need to rescale all of our data. You could easily try different scalers as
well as a different parameters to see what effect this has on your results.

7.3.1 Robustly Rescale

Set up the Robust Rescaler for inter-decile standardisation: 10th and 90th quan-
tiles.

rs = ???

for c in pcadf.columns.values:
pcadf[c] = rs.fit_transform(pcadf[c].values.reshape(-1, 1))

7.3.2 PCA Reduce

from sklearn.decomposition import PCA

pca = PCA(n_components=50, whiten=True)

pca.fit(pcadf)

explained_variance = pca.explained_variance_ratio_

31

singular_values = pca.singular_values_

7.3.3 Examine Explained Variance

x = np.arange(1,???)
plt.plot(x, explained_variance)
plt.ylabel('Share of Variance Explained')
plt.show()

for i in range(0, 20):
print(f"Component {i:>2} accounts for {explained_variance[i]*100:>2.2f}% of variance")

You should get that Component 0 accounts for 31.35%of the variance and Component
19 accounts for 0.37%.

###: How Many Components?

There are a number of ways that we could set a threshold for dimensionality reduc-
tion: - The most common is to look for the ‘knee’ in the Explained Variance plot
above. That would put us at about 5 retained components. - Another is to just keep
all components contributing more than 1% of the variance. That would put us at
about 10 components. - You can also (I discovered) look to shuffle the data and
repeatedly perform PCA to build confidence intervals. I have not implemented this
(yet).

In order to do anything with these components we need to somehow reattach them
to the MSOAs. So that entails taking the transformed results (X_train and X_test)

kn = knee_locator.KneeLocator(x, explained_variance,
curve='convex', direction='decreasing',
interp_method='interp1d')

print(f"Knee detected at: {kn.knee}")
kn.plot_knee()

keep_n_components = 7

If we weren't changing the number of components we
could re-use the pca object created above.
pca = PCA(n_components=keep_n_components, whiten=True)

X_train = pca.fit_transform(???)

Notice that we get the _same_ values out,
so this is a *deterministic* process that
is fully replicable (allowing for algorithmic
and programming language differences).
print(f"Total explained variance: {pca.explained_variance_ratio_.sum()*100:2.2f}%")
for i in range(0, keep_n_components):

print(f" Component {i:>2} accounts for {pca.explained_variance_ratio_[i]*100:>5.2f}% of variance")

32

https://medium.com/@nikolay.oskolkov/hi-jon-reades-my-sincere-apologies-for-this-very-late-reply-444f57054d14

Notice...
print(f"X-train shape: {len(X_train)}")
print(f"PCA df shape: {pcadf.shape[0]}")
So each observation has a row in X_train and there is
1 column for each component. This defines the mapping
of the original data space into the reduced one
print(f"Row 0 of X-train contains {len(X_train[0])} elements.")

7.4 Components to Columns

Difficulty: Moderate.

You could actually do this more quickly (but less clearly) using X_train.T to trans-
pose the matrix!

for i in range(0,keep_n_components):
s = pd.Series(X_train[:,???], index=pcadf.???)
pcadf[f"Component {i+1}"] = s

pcadf.sample(3).iloc[:,-10:-4]

7.5 (Re)Attaching GeoData

Difficulty: Moderate.

msoas = gpd.read_file(os.path.join('data','geo','Middle_Layer_Super_Output_Areas__December_2011__EW_BGC_V2-shp.zip'), driver='ESRI Shapefile')
msoas = msoas.set_index('MSOA11CD')
print(msoas.columns)

msoas.head(1)

pcadf.head(1)

gpcadf = pd.merge(msoas.set_index(['MSOA11CD'], drop=True), pcadf, left_index=True, right_index=True, how='inner')
print(f"Geo-PCA df has shape {gpcadf.shape[0]} x {gpcadf.shape[1]}")

You should get PCA df has shape 983 x 89.

gpcadf['Borough'] = gpcadf.MSOA11NM.apply(???)

33

7.6 Map the First n Components

Difficulty: Moderate.

How would you automate this so that the loop creates one plot for each of the first
3 components? How do you interpret these?

for comp in [f"Component {x}" for x in range(1,3)]:
ax = gpcadf.plot(column=???, cmap='plasma',

scheme='FisherJenks', k=7, edgecolor='None', legend=True, figsize=(9,7));
boros.plot(ax=ax, edgecolor='w', facecolor='none', linewidth=1, alpha=0.7)
ax.set_title(f'PCA {comp}')

Your first component map should look something like this:

Figure 2: PCA Component 1

8 UMAP

UMAP is a non-linear dimensionality reduction technique. Technically, it’s called
manifold learning: imagine being able to roll a piece of paper up in more than just
the 3rd dimension…). As a way to see if there is structure in your data this is amuch
better technique than one you might encounter in many tutorials: t-SNE. It has to
do with how the two techniques ‘learn’ the manifold to use with your data.

34

8.1 UMAP on Raw Data

Difficulty: Hard.

from umap import UMAP

You might want to experiment with all
3 of these values -- it may make sense
to package a lot of this up into a function!
keep_dims=2
rs=42

u = UMAP(
n_neighbors=25,
min_dist=0.01,
n_components=keep_dims,
random_state=rs)

X_embedded = u.fit_transform(???)
print(X_embedded.shape)

8.2 Write to Data Frame

Difficulty: Low.

Can probably also be solved using X_embedded.T.

for ix in range(0,X_embedded.shape[1]):
print(ix)
s = pd.Series(X_embedded[:,???], index=pcadf.???)
gpcadf[f"Dimension {ix+1}"] = s

8.3 Visualise!

Difficulty: Low.

rddf = gpcadf.copy() # Reduced Dimension Data Frame

35

8.3.1 Simple Scatter

f,ax = plt.subplots(1,1,figsize=(8,6))
sns.scatterplot(x=rddf[???], y=rddf[???], hue=rddf['Borough'], legend=False, ax=ax)

8.3.2 Seaborn Jointplot

That is suggestive of there being struccture in the data, but with 983 data points and
33 colours it’s hard to make sense of what the structure might imply. Let’s try this
again using the Subregion instead and taking advantage of the Seaborn visualisation
library’s jointplot (joint distribution plot):

rddf['Subregion'] = rddf.Borough.apply(lambda x: mapping[x])

Sets some handy 'keywords' to tweak the Seaborn plot
kwds = dict(s=7,alpha=0.95,edgecolor="none")
Set the *hue order* so that all plots have some colouring by Subregion
ho = ['Inner East','Inner West','Outer West and North West','Outer South','Outer East and North East']

g = sns.jointplot(data=rddf, x=???, y=???, height=8,
hue=???, hue_order=ho, joint_kws=kwds)

g.ax_joint.legend(loc='upper right', prop={'size': 8});

Your jointplot should look like this:

36

Figure 3: UMAP Jointplot

What do you make of this?

Maybe let’s give this one last go splitting the plot out by subregion so that we can
see how these vary:

for r in rddf.Subregion.unique():
g = sns.jointplot(data=rddf[rddf.Subregion==r], x='Dimension 1', y='Dimension 2',

hue='Borough', joint_kws=kwds)
g.ax_joint.legend(loc='upper right', prop={'size': 8});
g.ax_joint.set_ylim(0,15)
g.ax_joint.set_xlim(0,15)
plt.suptitle(r)

We can’t unfortunately do any clustering at this point to create groups from the data
(that’s next week!) so for now note that there are several large-ish groups (in terms of
membership) and few small ones picked up by t-SNE. Alos note that there is strong
evidence of some incipient structure: Inner East and West largely clump together,
while Outher East and Outer South also seem to group together, with Outer West
being more distinctive. If you look back at the PCA Components (especially #1) you

37

might be able to speculate about some reasons for this! Please note: this is only
speculation at this time!

Next week we’ll also add the listings data back in as part of the picture!

8.4 Map the n Dimensions

Difficulty: Low.

for comp in [f"Dimension {x}" for x in range(1,3)]:
f, ax = plt.subplots(1,1,figsize=(12,8))
rddf.plot(???);
boros.plot(edgecolor='w', facecolor='none', linewidth=1, alpha=0.7, ax=ax)
ax.set_title(f'UMAP {comp}')

Your first dimension map should look something like this:

Figure 4: UMAP Dimension 1

8.5 And Save

rddf.to_parquet(os.path.join('data','clean','Reduced_Dimension_Data.geoparquet'))

38

8.5.1 Questions

• How would you compare/contrast PCA components with UMAP dimensions?
Why do they not seem to show the same thing even though both seem to show
something?

• What might you do with the output of either the PCA or UMAP processes?

8.6 Credits!

Contributors:
The following individuals have contributed to these teaching materials: Jon Reades
(j.reades@ucl.ac.uk).

License
These teaching materials are licensed under a mix of The MIT License and the Cre-
ative Commons Attribution-NonCommercial-ShareAlike 4.0 license.

Potential Dependencies:
This notebook may depend on the following libraries: pandas, geopandas, sklearn,
matplotlib, seaborn

39

https://opensource.org/licenses/mit-license.php
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/

	Preamble
	Loading MSOA Census Data
	Splitting into Test & Train
	Normalisation
	Standardisation
	Non-Linear Transformations
	Principal Components Analysis
	UMAP

