
Practical 12: Grouping Data
Aggregation, Classification & Clustering

Table of contents

1 Preamble 2

2 Load Data 5

3 Aggregate Listings by MSOA 7

4 Pivot Tables & ‘Wide Data’ 12

5 First K-Means Clustering 15

6 Second K-Means Clustering 17

7 DBSCAN 22

8 Self-Organising Maps 26

9 Classification 26
A common challenge in data analysis is how to group observations in a data set to-
gether in a way that allows for generalisation: this group of observations are similar
to one another, that group is dissimilar to this group. Sometimes we have a label
that we can use as part of the process (in which case we’re doing classification), and
somtimes we don’t (in which case we’re doing clustering). But what defines similarity
and difference? There is no one answer to that question and so there are many dif-
ferent ways to cluster or classify data, each of which has strengths and weaknesses
that make them more, or less, appropriate in different contexts.

Note

� Connections: This practical pulls together many topics covered in other mod-
ules, and many of the ideas covered elsewhere in this module: clustering, re-
producibility, dimensionality reduction… but, above all, this practical is about
the importance of judgement. Do not take what we’ve done here as the ONE
RIGHT WAY: a number of these results are questionnable at best because we
haven’t developed or defined an underlying hypothesis informed by a critical
appraisal of the data. You should be much more selective in how you deploy
the data and the algorithms, as last week’s session on dimensionality should
have shown.

1

https://jreades.github.io/fsds/sessions/week8.html

1 Preamble

import warnings # This suppresses some meaningless errors from Seaborn and Pandas
warnings.simplefilter(action='ignore', category=FutureWarning)

import numpy as np
import pandas as pd
import geopandas as gpd
import seaborn as sns
import matplotlib.pyplot as plt
import matplotlib.cm as cm
import matplotlib as mpl
import re
import os

from matplotlib.colors import ListedColormap

All of these are potentially useful, though
not all have been used in this practical --
I'd suggest exploring the use of different
Scalers/Transformers as well as clustering
algorithms...
from sklearn.neighbors import NearestNeighbors
from sklearn.decomposition import PCA
from sklearn.preprocessing import MinMaxScaler, StandardScaler, RobustScaler, PowerTransformer
from sklearn.cluster import KMeans, DBSCAN, OPTICS
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import silhouette_samples, silhouette_score

import random
random.seed(42) # For reproducibility
np.random.seed(42) # For reproducibility

Make numeric display a bit neater
pd.set_option('display.float_format', lambda x: '{:,.2f}'.format(x))

1.0.1 Initialise the Scaler(s)

Remember that you can set up the sklearn transformers in advance, and then fit
them before transform-ing them.

mms = MinMaxScaler(feature_range=(-1,1))
stds = StandardScaler()
rbs = RobustScaler()
pts = PowerTransformer()

2

1.0.2 Set Up Plotting Functions

Note

� Connections: Here’s an example of how you can use a function to do some-
thing a little more complex than just locally save some data. This is still largely
a kind of ‘stub’, but if you are going to be producing a lot of plots of London
why not automate away some of the pain of producing a good-looking basemap
each time: use a function to apply the formatting and then just return f and ax
as if you’d done this all yourself.

def plt_ldn(w, b):
"""
Creates a new figure of a standard size with the
water (w) and boundary (b) layers set up for easy
plotting. Right now this function assumes that you're
looking at London, but you could parameterise it in
other ways ot allow it to work for other areas.

w: a water layer for London
b: a borough (or other) boundary layer for London
"""
fig, ax = plt.subplots(1, figsize=(14, 12))
w.plot(ax=ax, color='#79aef5', zorder=2)
b.plot(ax=ax, edgecolor='#cc2d2d', facecolor='None', zorder=3)
ax.set_xlim([502000,563000])
ax.set_ylim([155000,201500])
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.spines['bottom'].set_visible(False)
ax.spines['left'].set_visible(False)
return fig, ax

########################
These may no longer be relevant because of changes to geopandas API

def default_cmap(n, outliers=False):
cmap = mpl.cm.get_cmap('viridis_r', n)
colors = cmap(np.linspace(0,1,n))
if outliers:

gray = np.array([225/256, 225/256, 225/256, 1])
colors = np.insert(colors, 0, gray, axis=0)

return ListedColormap(colors)

mappable = ax.collections[-1] if you add the geopandas
plot last.
def add_colorbar(mappable, ax, cmap, norm, breaks, outliers=False):

cb = fig.colorbar(mappable, ax=ax, cmap=cmap, norm=norm,
boundaries=breaks,
extend=('min' if outliers else 'neither'),

3

spacing='uniform',
orientation='horizontal',
fraction=0.05, shrink=0.5, pad=0.05)

cb.set_label("Cluster Number")

1.0.3 Set up Caching Function

import os
from requests import get
from urllib.parse import urlparse

def cache_data(src:str, dest:str) -> str:
"""Downloads and caches a remote file locally.

The function sits between the 'read' step of a pandas or geopandas
data frame and downloading the file from a remote location. The idea
is that it will save it locally so that you don't need to remember to
do so yourself. Subsequent re-reads of the file will return instantly
rather than downloading the entire file for a second or n-th itme.

Parameters

src : str

The remote *source* for the file, any valid URL should work.
dest : str

The *destination* location to save the downloaded file.

Returns

str

A string representing the local location of the file.
"""

url = urlparse(src) # We assume that this is some kind of valid URL
fn = os.path.split(url.path)[-1] # Extract the filename
dfn = os.path.join(dest,fn) # Destination filename

Check if dest+filename does *not* exist --
that would mean we have to download it!
if not os.path.isfile(dfn) or os.path.getsize(dfn) < 1:

print(f"{dfn} not found, downloading!")

Convert the path back into a list (without)
the filename -- we need to check that directories
exist first.
path = os.path.split(dest)

Create any missing directories in dest(ination) path

4

-- os.path.join is the reverse of split (as you saw above)
but it doesn't work with lists... so I had to google how
to use the 'splat' operator! os.makedirs creates missing
directories in a path automatically.
if len(path) >= 1 and path[0] != '':

os.makedirs(os.path.join(*path), exist_ok=True)

Download and write the file
with open(dfn, "wb") as file:

response = get(src)
file.write(response.content)

print('Done downloading...')

else:
print(f"Found {dfn} locally!")

return dfn

2 Load Data

2.1 London Data Layers

Difficulty: Low.

spath = 'https://github.com/jreades/fsds/blob/master/data/src/' # source path
ddir = os.path.join('data','geo') # destination directory
water = gpd.read_file(cache_data(spath+'Water.gpkg?raw=true', ddir))
boros = gpd.read_file(cache_data(spath+'Boroughs.gpkg?raw=true', ddir))
green = gpd.read_file(cache_data(spath+'Greenspace.gpkg?raw=true', ddir))

msoas = gpd.read_file(cache_data('http://orca.casa.ucl.ac.uk/~jreades/data/MSOA-2011.gpkg', ddir))
msoas = msoas.to_crs(epsg=27700)

I don't use this in this practical, but it's a
really useful data set that gives you 'names'
for MSOAs that broadly correspond to what most
Londoners would think of as a 'neighbourhood'.
msoa_nms = gpd.read_file(cache_data('http://orca.casa.ucl.ac.uk/~jreades/data/MSOA-2011-Names.gpkg', ddir))
msoa_nms = msoa_nms.to_crs(epsg=27700)
print("Done.")

5

2.2 Reduced Dimensionality MSOA Data

Difficulty: Low.

You should have this locally from last week, but just in case…

host = 'http://orca.casa.ucl.ac.uk'
path = '~jreades/data'
rddf = gpd.read_parquet(cache_data(f'{host}/{path}/Reduced_Dimension_Data.geoparquet', ddir))
print(f"Data frame is {rddf.shape[0]:,} x {rddf.shape[1]}")

You should have: Data frame is 983 x 93.

And below you should see both the components and the dimensions from last week’s
processing.

rddf.iloc[0:3, -7:]

I get the results below, but note that the Dimension values may be slightly differ-
ent:

Component
5

Component
6

Component
7 Borough

Dimension
1

Dimension
2 Subregion

E02000001 1.44 3.95 -1.52 City
of

Lon-
don

7.74 3.36 Inner
West

E02000002 -0.28 0.89 0.26 Barking
and
Da-
gen-
ham

2.04 7.59 Outer
East
and

North
East

E02000003 -0.11 1.12 0.83 Barking
and
Da-
gen-
ham

2.20 6.87 Outer
East
and

North
East

2.3 Listings Data

Difficulty: Low.

Let’s also get the listings data from a few weeks back:

Set download URL
ymd = '2024-06-14'
host = 'https://orca.casa.ucl.ac.uk'

6

url = f'{host}/~jreades/data/{ymd}-listings.geoparquet'

listings = gpd.read_parquet(cache_data(url, ddir))
listings = listings.to_crs(epsg=27700)
print(f"Data frame is {listings.shape[0]:,} x {listings.shape[1]}")

You should have: Data frame is 85,134 x 31.

And a quick plot of the price to check:

listings.plot(???, cmap='plasma', scheme='quantiles', k=10,
markersize=.5, alpha=0.15, figsize=(10,7));

3 Aggregate Listings by MSOA

3.1 Join Listings to MSOA

Difficulty: Medium-to-hard.

First, let’s link all this using the MSOA Geography that we created last week and a
mix or merge and sjoin!

Note

🔗 Connections: Notice a few things going on here! We are calling `gpd.sjoin` because pandas (`pd`) doesn't know about spatial joins, only geopandas (`gpd`) does. More on this [next week](https://jreades.github.io/fsds/sessions/week10.html#lectures). Also see how we drop some columns _at the point where we do the join_ by taking advantage of the fact that most pandas/geopandas operations return a _copy_ of the (Geo)DataFrame. That allows us to get back from the spatial join a neat, tidy data frame ready for further analysis. If you're struggling to make sense of this, try removing the `drop` operations and see what your data frame looks like afterwards. This should all be old hat, but in case you need a refresher there's always [Week 5](https://jreades.github.io/fsds/sessions/week5.html) on pandas.

Before the spatial join
listings.columns

msoa_listings = gpd.sjoin(???, msoas.drop(
columns=['MSOA11NM', 'LAD11CD', 'LAD11NM', 'RGN11CD', 'RGN11NM',

'USUALRES', 'HHOLDRES', 'COMESTRES', 'POPDEN', 'HHOLDS',
'AVHHOLDSZ']), predicate='???').drop(

columns=['latitude','longitude','index_right']
)

All we've added is the MSOA11CD
msoa_listings.columns

All being well you should now have:

Index(['listing_url', 'last_scraped', 'name', 'description', 'host_id',
'host_name', 'host_since', 'host_location', 'host_is_superhost',
'host_listings_count', 'host_total_listings_count',
'host_verifications', 'property_type', 'room_type', 'accommodates',
'bathrooms_text', 'bedrooms', 'beds', 'amenities', 'price',

7

'minimum_nights', 'maximum_nights', 'availability_365',
'number_of_reviews', 'first_review', 'last_review',

'review_scores_rating', 'reviews_per_month', 'geometry', 'MSOA11CD'],
dtype='object')

3.2 Price by MSOA

Difficulty: Medium.

Let’s calculate themedian price by MSOA… Notice that we have to specify the column
wewant after the groupby so the we don’t get themedian of every column returned

Note

🔗 Connections: I find `groupby` to be a complex operation and often need a couple of gos before I get back waht I want. The thing to take away is that: 1) anything in the `groupby` will become part of the `index` afterwards (so if you group on multiple things you get a multi-part index); 2) aggregating functions apply to _all_ columns unless you filter them some way. Here we filter by selecting only the `price` column to aggregate. You can also filter for `numeric only`.

*m*soa *l*istings *g*rouped by *p*rice
mlgp = msoa_listings.groupby('???')['price'].agg('???')
mlgp.head()

You should get something like:

MSOA11CD
E02000001 170.00
E02000002 97.00
E02000003 80.00
E02000004 54.00
E02000005 100.00
Name: price, dtype: float64

3.3 Room Type by MSOA

Difficulty: Medium.

Now let’s calculate the count of room types by MSOA and compare the effects of
reset_index on the outputs below. And notice too that we can assign the aggregated
value to a column name!

*m*soa *l*istings *g*rouped *c*ount
mlgc = msoa_listings.groupby(['???','???'], observed=False).listing_url.agg(Count='???')
mlgc.head()

You should get something resembling this:

8

MSOA11CD room_type Count

E02000001 Entire home/apt 466
Hotel room 0
Private room 61
Shared room 1

E02000002 Entire home/apt 4

*m*soa *l*istings *g*rouped *c*ount *r*eset index
mlgcr = msoa_listings.groupby(['???','???'], observed=False).listing_url.agg(Count='???').reset_index() # msoa listings grouped counts
mlgcr.head()

You should get something like:

MSOA11CD room_type Count

0 E02000001 Entire home/apt 466
1 E02000001 Hotel room 0
2 E02000001 Private room 61
3 E02000001 Shared room 1
4 E02000002 Entire home/apt 4

3.4 Price by Room Type

Difficulty: Hard.

But perhaps median price/room type would make more sense? And do we want to
retain values where there are no listings? For example, there are no hotel rooms
listed for E02000001, how do we ensure that these NAs are dropped?

*m*soa *l*istings *g*rouped *r*oom *p*rice
mlgrp = msoa_listings.???(???, observed=True

)['price'].agg('???').reset_index()
mlgrp.head()

You should get something like:

MSOA11CD room type price

0 E02000001 Entire home/apt 177.00
2 E02000001 Private room 100.00
3 E02000001 Shared room 120.00
4 E02000002 Entire home/apt 117.00
6 E02000002 Private room 42.00

9

3.5 Explore Outlier Per-MSOA Prices

Difficulty: Medium.

Are there MSOAs what look like they might contain erroneous data?

3.5.1 Plot MSOA Median Prices

mlgp.hist(bins=200);

3.5.2 Examine Listings from High-Priced MSOAs

Careful, this is showing the listings from MSOAs whose median price is above
$300/night:

msoa_listings[
msoa_listings.MSOA11CD.isin(mlgp[mlgp > 300].index)

].sort_values(by='price', ascending=False).head(7)[
['price','room_type','name','description']

]

Some of these look legi (4, 5, and… 8 bedroom ‘villas’?), though not every one…

And how about these?

msoa_listings[
(msoa_listings.MSOA11CD.isin(mlgp[mlgp > 300].index)) & (msoa_listings.room_type!='Entire home/apt')

].sort_values(by='price', ascending=False).head(7)[
['price','room_type','property_type','name','description']

]

If we wanted to be rigorous then we’d have to investigate further: properties in
Mayfair and Westminster are going to be expensive, but are these plausible nightly
prices? In some cases, yes. In others…

msoa_listings[
(msoa_listings.MSOA11CD.isin(mlgp[mlgp < 100].index)) & (msoa_listings.room_type!='Entire home/apt')

].sort_values(by='price', ascending=False).head(7)[
['price','room_type','name','description']

]

On the whole, let’s take a guess that there are a small number of implausibly high
prices for individual units that aren’t in very expensive neighbourhoods and that
these are either erroneous/deliberately incorrect, or represent a price that is not
per-night.

10

Note

🔗 Connections: What's the right answer here? There isn't one. You could probably spend _months_ figuring out what's a real, available-to-let listing and waht isn't. I would argue that assuming all listings are 'legit' without doing some additional EDA and ESDA is negligent. You could also look at how some of the methods of standardisation/normalisation work and use those to identify improbable listings (but remember that a £10,000 in Mayfair _might_ be legit, while a $5,000 listing in Barking _probably_ isn't!). Or you could look at the inter-decile range (or just define your own range: 1%-99%?).

3.5.3 Filter Unlikely Listings

Difficulty: Hard.

See if you can filter out these less likely listings on the following criteria:

1. Listings are priced above $300/night AND
2. Room type is not 'Entire home/apt' AND
3. Listings do not contain the words: suite, luxury, loft, stunning, prime, historic,

or deluxe.

I found 901 rows to drop this way.

target_regex = r'(?:suite|luxury|loft|stunning|prime|historic|deluxe|boutique)'
to_drop = msoa_listings[

(???) &
(???) &
~(???(target_regex, flags=re.IGNORECASE, regex=True, na=True))]

print(f"Have found {to_drop.shape[0]:,} rows to drop on the basis of unlikely per night prices.")

to_drop.sort_values(by='price', ascending=False)[['price','room_type','name','description']]

3.5.4 Plot Unlikely Listings

Here we use the plt_ldn function – notice how it’s designed to return f,ax in the
same way that plt.subplots (which we’re already familiar with) does!

f,ax = plt_ldn(???, ???)
to_drop.plot(column='price', markersize=10, alpha=0.7, cmap='viridis', ax=ax);

3.5.5 … And Drop

Some might be legitimate, but I’m feeling broadly ok with the remainder.

cleaned = msoa_listings.drop(index=to_drop.???)
print(f"Cleaned data has {cleaned.shape[0]:,} rows.")

After this I had 84,308 rows.

I would normally, at this point, spend quite a bit of time validating this cleaning
approach, but right now we’re going to take a rough-and-ready approach.

11

3.5.6 Questions

• What data type did Task 2.2 return?

• What is the function of reset_index() in Task 2.3 and when might you choose
to reset (or not)?

4 Pivot Tables & ‘Wide Data’

The group_by operation is one way to organise and aggregate our data, but pivot
tables are a second common way to achieve this. We typically use a pivot table to go
from long to wide data frames – it’s often seen as one of Excel’s main benefits, but
Pandas can do that too!

Note

🔗 Connections: Notice that a pivot table is just a different kind of aggregation. Principally, it's about going from long to wide in your data frame. These issues should be familiar from R and it's `mutate` and other `data.table` methods. We just write them different in Python.

4.1 Create Pivot Table

Difficulty: Hard.

We can make use of the pivot table function to generate counts by MSOA in a ‘wide’
format.

pivot = cleaned.groupby(
['MSOA11CD','room_type'], observed=False

).listing_url.agg(Count='count').reset_index().pivot(
index='???', columns=['???'], values=['???'])

pivot.head(3)

The formatting will look a tiny bit different, but you should get something like this:

Count

room_typeEntire home/apt Hotel room Private
room

Shared
room

MSOA11CD
E02000001 466 0 55 1
E02000002 4 0 2 0
E02000003 12 0 13 0

12

4.2 Check Counts

Difficulty: Low.

pivot.sum()

Just to reassure you that the pivot results ‘make sense’:

print(cleaned[cleaned.room_type=='Entire home/apt'].listing_url.count())
print(cleaned[cleaned.room_type=='Private room'].listing_url.count())

4.3 Tidy & Normalise

Difficulty: Low.

My instinct at this point is that, looking at the pivot table, we see quite different
levels of Airbnb penetration and it is hard to know how handle this difference: share
would be unstable because of the low counts in some places and high counts in
others; a derived variable that tells us something about density or mix could be
interesting (e.g. HHI or LQ) but wouldn’t quite capture the pattern of mixing.

4.3.1 Tidy

Personally, based on the room type counts above I think we can drop Hotel Rooms
and Shared Rooms from this since the other two categories are so dominant.

Flatten the column index
pivot.columns = ['Entire home/apt','Hotel room','Private room','Shared room']
Drop the columns
pivot.drop(???, inplace=True)
pivot.head()

You should have only the Entire home/apt and Private room columns now.

4.3.2 Normalise

pivot_norm = pd.DataFrame(index=pivot.index)
for c in pivot.columns.to_list():

Power Transform
pivot_norm[c] = pts.???(pivot[c].to_numpy().reshape(???,???))

pivot_norm.head()

You should have something like:

13

Entire home/apt Private room

MSOA11CD
E02000001 2.20 1.06
E02000002 -1.29 -1.85

4.3.3 Plot

pnm = pd.merge(msoas.set_index('MSOA11CD'), pivot_norm, left_index=True, right_index=True)
pnm.plot(column='Entire home/apt', cmap='viridis', edgecolor='none', legend=True, figsize=(12,8));

4.4 PCA

Difficulty: Moderate, though you might find the questions hard.

You can merge the output of this next step back on to the rddf data frame as part of
a clustering process, though we’d really want to do some more thinking about what
this data means and what transformations we’d need to do in order to make them
meaningful.

For instance, if we went back to last week’s code, we could have appended this Insid-
eAirbnb data before doing the dimensionality reduction, or we could apply it now to
create a newmeasure that could be used as a separate part of the clustering process
together with the reduced dimensionality of the demographic data.

4.4.1 Perform Reduction

pcomp = PCA(n_components=???, random_state=42)
rd = pcomp.???(pivot_norm)
print(f"The explained variance of each component is: {', '.join([f'{x*100:.2f}%' for x in pcomp.explained_variance_ratio_])}")

Take the first component and convert to a series to enable the merge:

airbnb_pca = pd.DataFrame(
{'Airbnb Component 1': mms.fit_transform(rd[:,1].reshape(-1,1)).reshape(1,-1)[0]},
index=pivot.index)

airbnb_pca.head()

You should have something like: | | Airbnb Component 1 | | :—- | —-: | | MSOA11CD
| | | E02000001 | 0.47 | | E02000002 | 0.19

pcanm = pd.merge(msoas.set_index('MSOA11CD'), airbnb_pca, left_index=True, right_index=True)
pcanm.plot(column='Airbnb Component 1', cmap='viridis', edgecolor='none', legend=True, figsize=(12,8));

14

4.4.2 Write to Data Frame

Result Set from merge
rs = pd.merge(rddf, airbnb_pca, left_index=True, right_index=True)

Grab the PCA, UMAP, and Airbnb outputs for clustering and append rescaled price:

Merge the reducded dimensionality data frame with the PCA-reduced Airbnb data
to create the *cl*uster *d*ata *f*rame
cldf = pd.merge(rddf.loc[:,'Component 1':], airbnb_pca,

left_index=True, right_index=True)

Append median price from cleaned listings grouped by MSOA too!
s1 = cleaned.groupby(by='MSOA11CD').price.agg('median')
cldf['median_price'] = pd.Series(np.squeeze(mms.fit_transform(s1.values.reshape(-1,1))), index=s1.index)

Append mean price from cleaned listings grouped by MSOA too!
s2 = cleaned.groupby(by='MSOA11CD').price.agg('mean')
cldf['mean_price'] = pd.Series(np.squeeze(mms.fit_transform(s2.values.reshape(-1,1))), index=s2.index)

cldf.drop(columns=['Subregion','Borough'], inplace=True)

cldf.head()

4.4.3 Questions

• Have a think about why you might want to keep the Airbnb data separate from
the MSOA data when doing PCA (or any other kind of dimensionality reduction)!

• Why might it be interesting to add both mean and median MSOA prices to the
clustering process? Here’s a hint (but it’s very subtle): sns.jointplot(x=s1,
y=s2, s=15, alpha=0.6)

5 First K-Means Clustering

5.1 Perform Clustering

Difficulty: Low.

c_nm = 'KMeans' # Clustering name
k_pref = ??? # Number of clusters

15

kmeans = KMeans(n_clusters=k_pref, n_init=25, random_state=42).fit(cldf.drop(columns=['Dimension 1','Dimension 2'])) # The process

Here are the results:

print(kmeans.labels_) # The results

5.2 Save Clusters to Data Frame

Difficulty: Low.

5.2.1 Write Series and Assign

Now capture the labels (i.e. clusters) and write them to a data series that we store
on the result set df (rs):

rs[c_nm] = pd.Series(kmeans.labels_, index=cldf.index)

5.2.2 Histogram of Cluster Members

How are the clusters distributed?

sns.histplot(data=???, x=c_nm, bins=k_pref);

5.2.3 Map Clusters

And here’s a map!

fig, ax = plt_ldn(water, boros)
fig.suptitle(f"{c_nm} Results (k={k_pref})", fontsize=20, y=0.92)
rs.plot(column=???, ax=ax, linewidth=0, zorder=0, categorical=???, legend=True);

5.2.4 Questions

• What critical assumption did we make when running this analysis?

• Why did I not use the UMAP dimensions here?

• Why dowe have the c_nm='kMeans'whenwe knowwhat kind of clustering we’re
doing?

16

• Does this look like a good clustering?

6 Second K-Means Clustering

6.1 What’s the ‘Right’ Number of Clusters?

Difficulty: Moderate.

There’s more than one way to find the ‘right’ number of clusters. In Singleton’s Geo-
computation chapter they use WCSS to pick the ‘optimal’ number of clusters. The
idea is that you plot the average WCSS for each number of possible clusters in the
range of interest (2…n) and then look for a ‘knee’ (i.e. kink) in the curve. The principle
of this approach is that you look for the point where there is declining benefit from
adding more clusters. The problem is that there is always some benefit to adding
more clusters (the perfect clustering is k==n), so you don’t always see a knee.

Another way to try to make the process of selecting the number of clusters a little
less arbitrary is called the silhouette plot and (like WCSS) it allows us to evaluate the
‘quality’ of the clustering outcome by examining the distance between each obser-
vation and the rest of the cluster. In this case it’s based on Partitioning Around the
Medoid (PAM).

Either way, to evaluate this in a systematic way, we want to do multiple k-means
clusterings for multiple values of k and then we can look at which gives the best
results…

kcldf = cldf.drop(columns=['Dimension 1','Dimension 2'])

6.1.1 Repeated Clustering

Let’s try clustering across a wider range. Because we repeatedly re-run the clustering
code (unlike with Hierarchical Clustering) this can take a few minutes. I got nearly 5
minutes on a M2 Mac.

%%time

Adapted from: http://scikit-learn.org/stable/auto_examples/cluster/plot_kmeans_silhouette_analysis.html

x = []
y = []

For resolutions of 'k' in the range 2..40
for k in range(2,41):

17

#############
Do the clustering using the main columns
kmeans = KMeans(n_clusters=k, n_init=25, random_state=42).fit(kcldf)

Calculate the overall silhouette score
silhouette_avg = silhouette_score(kcldf, kmeans.labels_)

y.append(k)
x.append(silhouette_avg)

print('.', end='')

6.1.2 Plot Silhouette Scores

print()
print(f"Largest silhouette score was {max(x):6.4f} for k={y[x.index(max(x))]}")

plt.plot(y, x)
plt.gca().xaxis.grid(True);
plt.gcf().suptitle("Average Silhouette Scores");

Warning

⚠ Note: Had we used the UMAP dimensions here you'd likely see more instability in the silhouette plot because the distribution is not remotely Gaussian, though a lot depends on the magnitude of the columns and the number of UMAP vs. PCA components.

We can use the largest average silhouette score to determine the ‘natural’ number
of clusters in the data, but that that’s only if we don’t have any kind of underly-
ing theory, other empirical evidence, or even just a reason for choosing a different
value… Again, we’re now getting in areas where your judgement and your ability to
communicate your rationale to readers is the key thing.

6.2 Final Clustering

Difficulty: Low.

So although we should probably pick the largest silhouette scores, that’s k=3 which
kind of defeats the purpose of clustering in the first place. In the absence of a com-
pelling reason to pick 2 or 3 clusters, let’s have a closer look at the next maximum
silhouetted score:

18

6.2.1 Perform Clustering

k_pref=???

#############
Do the clustering using the main columns
kmeans = KMeans(n_clusters=k_pref, n_init=25, random_state=42).fit(kcldf)

Convert to a series
s = pd.Series(kmeans.labels_, index=kcldf.index, name=c_nm)

We do this for plotting
rs[c_nm] = s

Calculate the overall silhouette score
silhouette_avg = silhouette_score(kcldf, kmeans.labels_)

Calculate the silhouette values
sample_silhouette_values = silhouette_samples(kcldf, kmeans.labels_)

6.2.2 Plot Diagnostics

#############
Create a subplot with 1 row and 2 columns
fig, (ax1, ax2) = plt.subplots(1, 2)
fig.set_size_inches(9, 5)

The 1st subplot is the silhouette plot
The silhouette coefficient can range from -1, 1
ax1.set_xlim([-1.0, 1.0]) # Changed from -0.1, 1

The (n_clusters+1)*10 is for inserting blank space between silhouette
plots of individual clusters, to demarcate them clearly.
ax1.set_ylim([0, kcldf.shape[0] + (k_pref + 1) * 10])

y_lower = 10

For each of the clusters...
for i in range(k_pref):

Aggregate the silhouette scores for samples belonging to
cluster i, and sort them
ith_cluster_silhouette_values = \

sample_silhouette_values[kmeans.labels_ == i]

ith_cluster_silhouette_values.sort()

size_cluster_i = ith_cluster_silhouette_values.shape[0]
y_upper = y_lower + size_cluster_i

19

Set the color ramp
color = plt.cm.Spectral(i/k_pref)
ax1.fill_betweenx(np.arange(y_lower, y_upper),

0, ith_cluster_silhouette_values,
facecolor=color, edgecolor=color, alpha=0.7)

Label the silhouette plots with their cluster numbers at the middle
ax1.text(-0.05, y_lower + 0.5 * size_cluster_i, str(i))

Compute the new y_lower for next plot
y_lower = y_upper + 10 # 10 for the 0 samples

ax1.set_title("The silhouette plot for the clusters.")
ax1.set_xlabel("The silhouette coefficient values")
ax1.set_ylabel("Cluster label")

The vertical line for average silhouette score of all the values
ax1.axvline(x=silhouette_avg, color="red", linestyle="--", linewidth=0.5)

ax1.set_yticks([]) # Clear the yaxis labels / ticks
ax1.set_xticks(np.arange(-1.0, 1.1, 0.2)) # Was: [-0.1, 0, 0.2, 0.4, 0.6, 0.8, 1]

2nd Plot showing the actual clusters formed --
we can only do this for the first two dimensions
so we may not see fully what is causing the
resulting assignment
colors = plt.cm.Spectral(kmeans.labels_.astype(float) / k_pref)
ax2.scatter(kcldf[kcldf.columns[0]], kcldf[kcldf.columns[1]],

marker='.', s=30, lw=0, alpha=0.7, c=colors)

Labeling the clusters
centers = kmeans.cluster_centers_

Draw white circles at cluster centers
ax2.scatter(centers[:, 0], centers[:, 1],

marker='o', c="white", alpha=1, s=200)

for i, c in enumerate(centers):
ax2.scatter(c[0], c[1], marker='$%d$' % i, alpha=1, s=50)

ax2.set_title("Visualization of the clustered data")
ax2.set_xlabel("Feature space for the 1st feature")
ax2.set_ylabel("Feature space for the 2nd feature")

plt.suptitle(("Silhouette results for KMeans clustering "
"with %d clusters" % k_pref),
fontsize=14, fontweight='bold')

plt.show()

20

Warning

⚠ Stop: Make sure that you understand how the silhouette plot and value work, and why your results _may_ diverge from mine.

6.2.3 Map Clusters

fig, ax = plt_ldn(water, boros)
fig.suptitle(f"{c_nm} Results (k={k_pref})", fontsize=20, y=0.92)
rs.plot(column=c_nm, ax=ax, linewidth=0, zorder=0, categorical=True, legend=True);

6.3 ‘Representative’ Centroids

Difficulty: Moderate since, conceptually, there’s a lot going on.

To get a sense of how these clusters differ we can try to extract ‘representative’ cen-
troids (mid-points of the multi-dimensional cloud that constitutes a cluster). In the
case of k-means this will work quite will since the clusters are explicitly built around
mean centroids. There’s also a k-medoids clustering approach built around the me-
dian centroid.

These are columns that we want to suppress from our sample:

to_suppress=['OBJECTID', 'BNG_E', 'BNG_N', 'LONG', 'LAT',
'Shape__Are', 'Shape__Len', 'geometry', 'Component 1',
'Component 2', 'Component 3', 'Component 4', 'Component 5',
'Component 6', 'Component 7', 'Dimension 1', 'Dimension 2',
'Airbnb Component 1']

Take a sample of the full range of numeric columns:

cols = random.sample(rs.select_dtypes(exclude='object').drop(columns=to_suppress).columns.to_list(), 12)
print(cols)

Calculate the mean of these columns for each cluster:

Empty data frame with the columns we'll need
centroids = pd.DataFrame(columns=cols)

For each cluster...
for k in sorted(rs[c_nm].unique()):

print(f"Processing cluster {k}")

Select rows where the cluster name matches the cluster number
clust = rs[rs[c_nm]==k]

Append the means to the centroids data frame
centroids.loc[k] = clust[cols].mean()

21

centroids

centroids_long = pd.DataFrame(columns=['Variable','Cluster','Std. Value'])
for i in range(0,len(centroids.index)):

row = centroids.iloc[i,:]
for r in row.index:

d = pd.DataFrame({'Variable':r, 'Cluster':i, 'Std. Value':row[r]}, index=[1])
centroids_long = pd.concat([centroids_long, d], ignore_index=True)

g = sns.FacetGrid(centroids_long, col="Variable", col_wrap=3, height=3, aspect=1.5, margin_titles=True, sharey=True)
g = g.map(plt.bar, "Cluster", "Std. Value")

Note

🔗 Connections: The above centroid outputs are a way to think about how each cluster is 'loaded' on to the data. We can't show all of the variables in the data, so we've randomly selected a subset and can then look at how different clusters are more (or less) associated with the standardised value of a particular column/variable.

7 DBSCAN

For what it’s worth, I’ve had enormous trouble with DBSCAN and this kind of data. I
don’t think it deals very well with much more than three dimensions, so the flexbil-
ity to not have to specify the number of clusters is balanced with a density-based
approach that is severely hampered by high-dimensional distance-inflation.

Drop the PCA dimensions
cldf2 = cldf.loc[:,'Dimension 1':].copy()
for c in [x for x in cldf.columns.to_list() if x.startswith('Dimension ')]:

cldf2[c] = pd.Series(np.squeeze(mms.fit_transform(cldf2[c].to_numpy().reshape(-1,1))), index=cldf2.index)
cldf2.head()

7.1 Work out the Neighbour Distance

Difficulty: Moderate.

We normally look for some kind of ‘knee’ to set the distance.

nbrs = NearestNeighbors(n_neighbors=6).fit(cldf2)
distances, indices = nbrs.kneighbors(cldf2)

distances = np.sort(distances, axis=0)
distances = distances[:,1]

22

7.2 Derive Approximate Knee

Difficulty: Low.

from kneed import knee_locator

kn = knee_locator.KneeLocator(np.arange(distances.shape[0]), distances, S=12,
curve='convex', direction='increasing')

print(f"Knee detected at: {kn.knee}")
kn.plot_knee()
kn.plot_knee_normalized()

print(f"Best guess at epsilon for DBSCAN is {distances[kn.knee]:0.4f}")

7.3 Explore Epsilons

Difficulty: Moderate.

There are two values that need to be specified: eps and min_samples. Both seem to
be set largely by trial and error, though we can use the above result as a target. It’s
easiest to set min_samples first since that sets a floor for your cluster size and then
eps is basically a distance metric that governs how far away something can be from
a cluster and still be considered part of that cluster.

7.3.1 Iterate Over Range

Caution

⚠ Warning: Depending on the data volume, this next step may take quite a lot of time since we are iterating through many, many values of Epsilon to explore how the clustering result changes and how well this matches up with (or doesn't) the graph above.

%%time

c_nm = 'DBSCAN'

Make numeric display a bit neater
pd.set_option('display.float_format', lambda x: '{:,.4f}'.format(x))

el = []

max_clusters = 10
cluster_count = 1

iters = 0

23

for e in np.arange(0.025, 0.76, 0.01): # <- You might want to adjust these!

if iters % 25==0: print(f"{iters} epsilons explored.")

Run the clustering
dbs = DBSCAN(eps=e, min_samples=cldf2.shape[1]+1).fit(cldf2)

See how we did
s = pd.Series(dbs.labels_, index=cldf2.index, name=c_nm)

row = [e]
data = s.value_counts()

for c in range(-1, max_clusters+1):
try:

if np.isnan(data[c]):
row.append(None)

else:
row.append(data[c])

except KeyError:
row.append(None)

el.append(row)
iters+=1

edf = pd.DataFrame(el, columns=['Epsilon']+["Cluster " + str(x) for x in list(range(-1,max_clusters+1))])

Make numeric display a bit neater
pd.set_option('display.float_format', lambda x: '{:,.2f}'.format(x))

print("Done.")

7.3.2 Examine Clusters

edf.head() # Notice the -1 cluster for small epsilons

epsilon_long = pd.DataFrame(columns=['Epsilon','Cluster','Count'])

for i in range(0,len(edf.index)):
row = edf.iloc[i,:]
for c in range(1,len(edf.columns.values)):

if row[c] != None and not np.isnan(row[c]):
d = pd.DataFrame({'Epsilon':row[0], 'Cluster':f"Cluster {c-2}", 'Count':row[c]}, index=[1])
epsilon_long = pd.concat([epsilon_long, d], ignore_index=True)

epsilon_long['Count'] = epsilon_long.Count.astype(float)

24

7.3.3 Plot Cluster Sizes

One of the really big problems with DBSCAN and this kind of data is that you have no
practical way of specifying epsilon (whereas if you were doing walkability analysis
then you could cluster on walking distance!). So you can look at the data (as above)
to get a reasoanble value, but look what the output below shows about the stability
of the clusters for different values of epsilon!

fig, ax = plt.subplots(figsize=(12,8))
sns.lineplot(data=epsilon_long, x='Epsilon', y='Count', hue='Cluster');
plt.vlines(x=distances[kn.knee], ymin=0, ymax=epsilon_long.Count.max(), color=(1, .7, .7, .8), linestyles='dashed')
plt.gcf().suptitle(f"Cluster sizes for various realisations of Epsilon");
plt.tight_layout()

7.4 Final Clustering

Difficulty: Moderate.

###: Perform Clustering

Use the value from kneed…

dbs = DBSCAN(eps=distances[kn.knee], min_samples=cldf2.shape[1]+1).fit(cldf2.values)
s = pd.Series(dbs.labels_, index=cldf2.index, name=c_nm)
rs[c_nm] = s
print(s.value_counts())

###: Map Clusters

fig, ax = plt_ldn(water, boros)
fig.suptitle(f"{c_nm} Results", fontsize=20, y=0.92)
rs.plot(column=c_nm, ax=ax, linewidth=0, zorder=0, legend=True, categorical=True);

7.4.1 ‘Representative’ Centroids

to_suppress=['OBJECTID', 'BNG_E', 'BNG_N', 'LONG', 'LAT',
'Shape__Are', 'Shape__Len', 'geometry', 'Component 1',
'Component 2', 'Component 3', 'Component 4', 'Component 5',
'Component 6', 'Component 7', 'Dimension 1', 'Dimension 2',
'Airbnb Component 1']

Take a sample of the full range of numeric columns:

cols = random.sample(rs.select_dtypes(exclude='object').drop(columns=to_suppress).columns.to_list(), 12)
print(cols)

Calculate the mean of these columns for each cluster:

25

Empty data frame with the columns we'll need
centroids = pd.DataFrame(columns=cols)

For each cluster...
for k in sorted(rs[c_nm].unique()):

print(f"Processing cluster {k}")

Select rows where the cluster name matches the cluster number
clust = rs[rs[c_nm]==k]

Append the means to the centroids data frame
centroids.loc[k] = clust[cols].mean()

Drop the unclustered records (-1)
centroids.drop(labels=[-1], axis=0, inplace=True)
centroids

centroids_long = pd.DataFrame(columns=['Variable','Cluster','Std. Value'])
for i in range(0,len(centroids.index)):

row = centroids.iloc[i,:]
for r in row.index:

d = pd.DataFrame({'Variable':r, 'Cluster':i, 'Std. Value':row[r]}, index=[1])
centroids_long = pd.concat([centroids_long, d], ignore_index=True)

g = sns.FacetGrid(centroids_long, col="Variable", col_wrap=3, height=3, aspect=1.5, margin_titles=True, sharey=True)
g = g.map(plt.bar, "Cluster", "Std. Value")

8 Self-Organising Maps

SOMs offer a third type of clustering algorithm. They are a relatively ‘simple’ type of
neural network in which the ‘map’ (of the SOM) adjusts to the data. We’re not going
to do this in this practical, but the main thing is that, unlike the above approaches,
SOMs build a 2D map of a higher-dimensional space and use this as a mechanism
for subsequently clustering the raw data. In this sense there is a conceptual link
between SOMs and PCA or t-SNE or UMAP. Tehy are used quite a lot for text-clustering
using keywords (where you have high-dimensionality).

There are a lot of SOM implementations in Python but the one I used to use, called
SOMPY, appears to have been abandonned.

9 Classification

And now for something completely different! This is section is completely optional,
but I thought that you might find it helpful to have a look at how supervised learn-
ing (classification) differs from unsupervised learning (clustering). Here we’re go-
ing to perform a fairly straightforward classification: predicting the room_type for

26

https://www.google.com/search?q=python+self-organizing+map
https://github.com/sevamoo/SOMPY/issues

randomly-selected listings. Of course we know the true answer, but this is for demon-
stration purposes!

9.1 Additional Setup

Difficulty: Hard, as I’ve left out quite a bit of code.

9.1.1 Import Libraries

from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
from sklearn.metrics import confusion_matrix
from sklearn.inspection import permutation_importance

9.1.2 Set Up Data

I’m taking a fairly brutal approach here: anything that is not inherently numeric
is gone (bye, bye, text), and I’m not bothering to convert implicitly numeric values
either: dates could be converted to ‘months since last review’, for instance, while
amenities could be One-Hot Encoded after some pruning of rare amenities. This
leaves us with a much smaller number of columns to feed in to the classifier.

print(f"Cleaned columns: {', '.join(cleaned.columns.to_list())}.")
classifier_in = cleaned.drop(columns=['listing_url','last_scraped','name','description',

'host_name', 'host_location', 'property_type',
'bathrooms_text', 'amenities', 'geometry', 'MSOA11CD',
'host_since', 'first_review', 'last_review',
'host_verifications', 'review_scores_rating',
'reviews_per_month'])

9.1.3 Remove NAs

Not all classifiers have this issue, but some will struggle to make predictions (or not
be able to do so at all) if there are NAs in the data set. The classifier we’re using
can’t deal with NAs, so we have to strip these out, but before we do let’s check the
effect:

classifier_in.isna().sum()

We can safely drop these now, and you should end up with about 54,000 rows to
work with.

27

classifier_in = classifier_in.dropna(axis=0, how='any')
print(f"Now have {classifier_in.shape[0]:,} rows of data to work with (down from {cleaned.shape[0]:,}).")

print()
print(f"Classifier training columns: {', '.join(classifier_in.columns.to_list())}.")
classifier_in.head()

9.1.4 Remap Non-Numeric Columns

We do still have a couple of non-numeric columns to deal with: booleans and the
thing we’re actually trying to predict (the room type)!

classifier_in['host_is_superhost'] = classifier_in.host_is_superhost.replace({True:1, False:0}).astype('int')

le = LabelEncoder()
classifier_in['room_class'] = le.fit_transform(classifier_in.room_type)

A quick check: we should only have one type per class and vice versa.

classifier_in.groupby(by=['room_type','room_class']).host_id.agg('count').reset_index()

9.2 Random Forest Classification

Difficulty: Hard.

We’re going to use a Random Forest Classifier but the nice thing about sklearn is
that you can quite easily swap in other classifiers if you’d like to explore further.
This is one big advantage of Python over R in my book: whereas R tends to get new
algorithms first, they are often implemented independently by many people and you
can end up with incompatible data structures that require a lot of faff to reorganise
for a different algorithm. Python is a bit more ‘managed’ and the dominance of numpy
and sklearn and pandas means that people have an incentive to contribute to this
library or, if it’s genuinely novel, to create an implementation that works like it would
if it were part of sklearn!

Note

🔗 Connections: So here's an _actual_ Machine Learning implementation, but you'll have seen a lot of parts of the code before!

28

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html

9.2.1 Train/Test Split

train, test = train_test_split(classifier_in, test_size=0.2, random_state=42)
print(f"Train contains {train.shape[0]:,} records.")
print(f"Test contains {test.shape[0]:,} records.")

y_train = train.room_class
X_train = train.drop(columns=['room_class','room_type'])

y_test = test.room_class
X_test = test.drop(columns=['room_class','room_type'])

9.2.2 Classifier Setup

rfc = RandomForestClassifier(
max_depth=8,
min_samples_split=7,
n_jobs=4,
random_state=42

)

9.2.3 Fit and Predict

rfc.fit(X_train, y_train)

y_hat = rfc.predict(X_test)

9.3 Validate

Difficulty: Hard.

9.3.1 Confusion Matrix

c_matrix = pd.DataFrame(confusion_matrix(y_test, y_hat))
c_matrix.index = le.inverse_transform(c_matrix.index)
c_matrix.columns = le.inverse_transform(c_matrix.columns)
c_matrix

29

9.3.2 Feature Importance

Compare the Random Forest’s built-in ‘feature importance’ with Permutation Feature
Importance as documented here.

Note

🔗 Connections: This next section is the reason you shouldn't blindly run ML algorithms on your data. It turns out that the Random Forest is seriously affected by the scale of different variables, and of binary variables in particular. You will tend to get erroneous feature importance values back from `sklearn`'s RF implementation and should _normally_ look at Permutation Feature Importance values instead. But this little demonstration also shows (above) a more subtle issue: imbalanced data. There are far fewer hotels than there are private rooms, and far fewer of _those_ than there are entire home/apt listings in the sample. So you'll see that the RF has trouble predicting the classes correctly: that's because with a data set like this it's hard to to _better_ than just predicting entire home/apt _Every Single Time_.

mdi_importances = pd.Series(
rfc.feature_importances_, index=rfc.feature_names_in_

).sort_values(ascending=True)

ax = mdi_importances.plot.barh()
ax.set_title("Random Forest Feature Importances (MDI)")
ax.figure.tight_layout()

9.3.3 Permutation Feature Importance

result = permutation_importance(
rfc, X_test, y_test, n_repeats=10, random_state=42, n_jobs=2

)

sorted_importances_idx = result.importances_mean.argsort()
importances = pd.DataFrame(

result.importances[sorted_importances_idx].T,
columns=X_test.columns[sorted_importances_idx],

)
ax = importances.plot.box(vert=False, whis=10)
ax.set_title("Permutation Importances (Test Set)")
ax.axvline(x=0, color="k", linestyle="--")
ax.set_xlabel("Decrease in accuracy score")
ax.figure.tight_layout()

9.4 Shapely Values

Shapely values are a big part of explainable AI and they work (very broadly) by per-
muting the data to explore how sensitive the predictions made by the model are to
the results that you see. For these we need to install two libraries: shap (to do the
heavy lifting) and slicer to deal with the data.

9.4.1 Install Libraries

We should now have this already available in Docker, but just in case…

30

https://scikit-learn.org/stable/auto_examples/inspection/plot_permutation_importance.html
https://shap.readthedocs.io/en/latest/example_notebooks/overviews/An%20introduction%20to%20explainable%20AI%20with%20Shapley%20values.html

try:
import shap

except ModuleNotFoundError:
! pip install slicer shap
import shap

9.4.2 Check for Data Types

You are looking for anything other than int64 or float64 for the most part. Boolean
should be fine, but pandas’ internal, nullable integer type will give you a ufunc er-
ror.

X_test.info()

X_test['beds'] = X_test.beds.astype('int')

9.4.3 Plot Partial Dependence

shap.partial_dependence_plot(
"price", rfc.predict, X_test, ice=False,
model_expected_value=True, feature_expected_value=True

)

9.4.4 Calculate Shapely Values

This can take a long time: 4-5 hours (!!!) without developing a strategy for tackling
it. See the long discussion here. I’ve taken the approach of subsetting the data sub-
stantially (the model is already trained so it won’t impact the model’s predictions)
with a 20% fraction of the test data and an explainer sample of 5%. Onmy laptop the
‘Permutation explainer’ stage took about 14 minutes, but your results may obviously
be rather different.

Xsample = shap.utils.sample(X_test.sample(frac=0.2, random_state=41), 10)
explainer = shap.Explainer(rfc.predict, Xsample)

Now we calculate the shap values for the 5% sample from X_test.

Caution

⚠ Warning: This next block is the one that takes a long time to run. I got between 3mn and 4mn.

%%time
shap_values = explainer(X_test.sample(frac=.05, random_state=42))

31

https://github.com/slundberg/shap/issues/77

9.4.5 Single Observation

Now you can take any random record (sample_ind) and produce a shap plot to show
the role that each attribute played in its classification. Note that getting these plots
to save required some searching on GitHub.

sample_ind=250
shap.plots.waterfall(shap_values[sample_ind], max_display=14, show=False);
plt.title(f"Shapely values for observation #{sample_ind} ({X_test.sample(frac=.05, random_state=42).iloc[sample_ind].name})")
plt.tight_layout()
#plt.savefig('practical-09-waterfall.png', dpi=150)

Figure 1: Shapely Feature Plot for Feature 250

9.4.6 All Observations

shap.plots.beeswarm(shap_values, show=False)
plt.title(f"Shapely Swarm Plot for Sample")
plt.tight_layout()
plt.savefig('practical-09-swarm.png', dpi=150)

32

https://github.com/slundberg/shap/issues/153

Figure 2: Shapely Swarm Plot

9.5 Wrap-Up

• Find the appropriate eps value: Nearest Neighbour Distance Functions or In-
terevent Distance Functions

• Clustering Points
• Regionalisation algorithms with Aglomerative Clustering

You’ve reached the end, you’re done…

Er, no. This is barely scratching the surface! I’d suggest that you go back through
the above code and do three things: 1. Add a lot more comments to the code to
ensure that really have understood what is going on. 2. Try playing with some of
the parameters (e.g. my thresholds for skew, or non-normality) and seeing how your
results change. 3. Try outputting additional plots that will help you to understand
the quality of your clustering results (e.g. what is the makeup of cluster 1? Or 6?
What has it picked up? What names would I give these clsuters?).

If all of that seems like a lot of work then why not learn a bit more about machine
learning before calling it a day?

See: Introduction to Machine Learning with Scikit-Learn.

33

https://nbviewer.jupyter.org/github/pysal/pointpats/blob/master/notebooks/distance_statistics.ipynb#Nearest-Neighbor-Distance-Functions
https://nbviewer.jupyter.org/github/pysal/pointpats/blob/master/notebooks/distance_statistics.ipynb#Interevent-Distance-Functions
https://nbviewer.jupyter.org/github/pysal/pointpats/blob/master/notebooks/distance_statistics.ipynb#Interevent-Distance-Functions
https://darribas.org/gds_course/content/bH/lab_H.html#clusters-of-points
https://darribas.org/gds_course/content/bG/lab_G.html#regionalization-algorithms
http://www.slideshare.net/BenjaminBengfort/introduction-to-machine-learning-with-scikitlearn

	Preamble
	Load Data
	Aggregate Listings by MSOA
	Pivot Tables & `Wide Data'
	First K-Means Clustering
	Second K-Means Clustering
	DBSCAN
	Self-Organising Maps
	Classification

